

Dropwizard is a Java framework for developing ops-friendly, high-performance, RESTful web services.

Dropwizard pulls together stable, mature libraries from the Java ecosystem into a
simple, light-weight package that lets you focus on getting things done.

Dropwizard has out-of-the-box support for sophisticated configuration,
application metrics, logging, operational tools, and much more, allowing you and your
team to ship a production-quality web service in the shortest time possible.

	Getting Started

	User Manual

	Javadoc

	About Dropwizard

	Other Versions

Getting Started

Getting Started will guide you through the process of creating a simple Dropwizard
Project: Hello World. Along the way, we’ll explain the various underlying libraries and
their roles, important concepts in Dropwizard, and suggest some organizational
techniques to help you as your project grows. (Or you can just skip to the
fun part.)

Overview

Dropwizard straddles the line between being a library and a framework. Its goal is to provide
performant, reliable implementations of everything a production-ready web application needs. Because
this functionality is extracted into a reusable library, your application remains lean and focused,
reducing both time-to-market and maintenance burdens.

Jetty for HTTP

Because you can’t be a web application without HTTP, Dropwizard uses the Jetty [https://www.eclipse.org/jetty/] HTTP library to
embed an incredibly tuned HTTP server directly into your project. Instead of handing your
application off to a complicated application server, Dropwizard projects have a main method
which spins up an HTTP server. Running your application as a simple process eliminates a number of
unsavory aspects of Java in production (no PermGen issues, no application server configuration and
maintenance, no arcane deployment tools, no class loader troubles, no hidden application logs, no
trying to tune a single garbage collector to work with multiple application workloads) and allows
you to use all of the existing Unix process management tools instead.

Jersey for REST

For building RESTful web applications, we’ve found nothing beats Jersey [https://jersey.github.io/] (the JAX-RS [https://jcp.org/en/jsr/detail?id=311] reference
implementation) in terms of features or performance. It allows you to write clean, testable classes
which gracefully map HTTP requests to simple Java objects. It supports streaming output, matrix URI
parameters, conditional GET requests, and much, much more.

Jackson for JSON

In terms of data formats, JSON has become the web’s lingua franca, and Jackson [https://github.com/FasterXML/jackson] is the king of
JSON on the JVM. In addition to being lightning fast, it has a sophisticated object mapper, allowing
you to export your domain models directly.

Metrics for metrics

The Metrics [http://metrics.dropwizard.io/] library rounds things out, providing you with unparalleled insight into your code’s
behavior in your production environment.

And Friends

In addition to Jetty [https://www.eclipse.org/jetty/], Jersey [https://jersey.github.io/], and Jackson [https://github.com/FasterXML/jackson], Dropwizard also includes a number of libraries to help
you ship more quickly and with fewer regrets.

	Guava [https://github.com/google/guava], which, in addition to highly optimized immutable data structures, provides a growing
number of classes to speed up development in Java.

	Logback [https://logback.qos.ch/] and slf4j [https://www.slf4j.org/] for performant and flexible logging.

	Hibernate Validator [http://hibernate.org/validator/], the JSR 349 [https://jcp.org/en/jsr/detail?id=349] reference implementation, provides an easy, declarative
framework for validating user input and generating helpful and i18n-friendly error messages.

	The Apache HttpClient [http://hc.apache.org/httpcomponents-client-ga/index.html] and Jersey [https://jersey.github.io/] client libraries allow for both low- and high-level
interaction with other web services.

	JDBI [http://jdbi.github.io/] is the most straightforward way to use a relational database with Java.

	Liquibase [http://www.liquibase.org] is a great way to keep your database schema in check throughout your development and
release cycles, applying high-level database refactorings instead of one-off DDL scripts.

	Freemarker [http://freemarker.org/] and Mustache [https://mustache.github.io/] are simple templating systems for more user-facing applications.

	Joda Time [http://www.joda.org/joda-time/] is a very complete, sane library for handling dates and times.

Now that you’ve gotten the lay of the land, let’s dig in!

Setting Up Using Maven

We recommend you use Maven [http://maven.apache.org] for new Dropwizard applications. If you’re a big Ant [http://ant.apache.org/] / Ivy [http://ant.apache.org/ivy/], Buildr [http://buildr.apache.org/],
Gradle [https://www.gradle.org/], SBT [https://github.com/harrah/xsbt/wiki], Leiningen [https://github.com/technomancy/leiningen], or Gant [https://github.com/Gant/Gant] fan, that’s cool, but we use Maven, and we’ll be using Maven as
we go through this example application. If you have any questions about how Maven works,
Maven: The Complete Reference [https://books.sonatype.com/mvnref-book/reference/] should have what you’re looking for.

You have three alternatives from here:

	Create a project using dropwizard-archetype [https://github.com/dropwizard/dropwizard/tree/master/dropwizard-archetypes]:

mvn archetype:generate -DarchetypeGroupId=io.dropwizard.archetypes -DarchetypeArtifactId=java-simple -DarchetypeVersion=[REPLACE WITH A VALID DROPWIZARD VERSION]

	Look at the dropwizard-example [https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example]

	Follow the tutorial below to see how you can include it in your existing project

Tutorial

First, add a dropwizard.version property to your POM with the current version of Dropwizard
(which is @project.version@):

<properties>
 <dropwizard.version>INSERT VERSION HERE</dropwizard.version>
</properties>

Add the dropwizard-core library as a dependency:

<dependencies>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-core</artifactId>
 <version>${dropwizard.version}</version>
 </dependency>
</dependencies>

Alright, that’s enough XML. We’ve got a Maven project set up now, and it’s time to start writing
real code.

Creating A Configuration Class

Each Dropwizard application has its own subclass of the Configuration class which specifies
environment-specific parameters. These parameters are specified in a YAML [http://www.yaml.org/] configuration file which
is deserialized to an instance of your application’s configuration class and validated.

The application we’ll be building is a high-performance Hello World service, and one of our
requirements is that we need to be able to vary how it says hello from environment to environment.
We’ll need to specify at least two things to begin with: a template for saying hello and a default
name to use in case the user doesn’t specify their name.

Here’s what our configuration class will look like, full example conf here [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/src/main/java/com/example/helloworld/HelloWorldConfiguration.java]:

package com.example.helloworld;

import io.dropwizard.Configuration;
import com.fasterxml.jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.NotEmpty;

public class HelloWorldConfiguration extends Configuration {
 @NotEmpty
 private String template;

 @NotEmpty
 private String defaultName = "Stranger";

 @JsonProperty
 public String getTemplate() {
 return template;
 }

 @JsonProperty
 public void setTemplate(String template) {
 this.template = template;
 }

 @JsonProperty
 public String getDefaultName() {
 return defaultName;
 }

 @JsonProperty
 public void setDefaultName(String name) {
 this.defaultName = name;
 }
}

There’s a lot going on here, so let’s unpack a bit of it.

When this class is deserialized from the YAML file, it will pull two root-level fields from the YAML
object: template, the template for our Hello World saying, and defaultName, the default name
to use. Both template and defaultName are annotated with @NotEmpty, so if the YAML
configuration file has blank values for either or is missing template entirely an informative
exception will be thrown, and your application won’t start.

Both the getters and setters for template and defaultName are annotated with
@JsonProperty, which allows Jackson to both deserialize the properties from a YAML file but also
to serialize it.

Note

The mapping from YAML to your application’s Configuration instance is done
by Jackson [https://github.com/FasterXML/jackson]. This means your Configuration class can use all of
Jackson’s object-mapping annotations [http://wiki.fasterxml.com/JacksonAnnotations]. The validation of @NotEmpty is
handled by Hibernate Validator, which has a
wide range of built-in constraints [http://docs.jboss.org/hibernate/validator/4.2/reference/en-US/html_single/#validator-defineconstraints-builtin] for you to use.

Our YAML file will then look like the below, full example yml here [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml]:

template: Hello, %s!
defaultName: Stranger

Dropwizard has many more configuration parameters than that, but they all have sane defaults so
you can keep your configuration files small and focused.

So save that YAML file in the directory you plan to run the fat jar from (see below) as hello-world.yml, because
we’ll be getting up and running pretty soon, and we’ll need it. Next up, we’re creating our application class!

Creating An Application Class

Combined with your project’s Configuration subclass, its Application subclass forms the core
of your Dropwizard application. The Application class pulls together the various bundles and
commands which provide basic functionality. (More on that later.) For now, though, our
HelloWorldApplication looks like this:

package com.example.helloworld;

import io.dropwizard.Application;
import io.dropwizard.setup.Bootstrap;
import io.dropwizard.setup.Environment;
import com.example.helloworld.resources.HelloWorldResource;
import com.example.helloworld.health.TemplateHealthCheck;

public class HelloWorldApplication extends Application<HelloWorldConfiguration> {
 public static void main(String[] args) throws Exception {
 new HelloWorldApplication().run(args);
 }

 @Override
 public String getName() {
 return "hello-world";
 }

 @Override
 public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {
 // nothing to do yet
 }

 @Override
 public void run(HelloWorldConfiguration configuration,
 Environment environment) {
 // nothing to do yet
 }

}

As you can see, HelloWorldApplication is parameterized with the application’s configuration
type, HelloWorldConfiguration. An initialize method is used to configure aspects of the
application required before the application is run, like bundles, configuration source providers,
etc. Also, we’ve added a static main method, which will be our application’s entry point.
Right now, we don’t have any functionality implemented, so our run method is a little boring.
Let’s fix that!

Creating A Representation Class

Before we can get into the nuts-and-bolts of our Hello World application, we need to stop and think
about our API. Luckily, our application needs to conform to an industry standard, RFC 1149 [http://www.ietf.org/rfc/rfc1149.txt],
which specifies the following JSON representation of a Hello World saying:

{
 "id": 1,
 "content": "Hi!"
}

The id field is a unique identifier for the saying, and content is the textual
representation of the saying. (Thankfully, this is a fairly straight-forward industry standard.)

To model this representation, we’ll create a representation class:

package com.example.helloworld.api;

import com.fasterxml.jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.Length;

public class Saying {
 private long id;

 @Length(max = 3)
 private String content;

 public Saying() {
 // Jackson deserialization
 }

 public Saying(long id, String content) {
 this.id = id;
 this.content = content;
 }

 @JsonProperty
 public long getId() {
 return id;
 }

 @JsonProperty
 public String getContent() {
 return content;
 }
}

This is a pretty simple POJO, but there are a few things worth noting here.

First, it’s immutable. This makes Saying instances very easy to reason about in multi-threaded
environments as well as single-threaded environments. Second, it uses the JavaBeans standard for the
id and content properties. This allows Jackson [https://github.com/FasterXML/jackson] to serialize it to the JSON we need. The
Jackson object mapping code will populate the id field of the JSON object with the return value
of #getId(), likewise with content and #getContent(). Lastly, the bean leverages validation to ensure the content size is no greater than 3.

Note

The JSON serialization here is done by Jackson, which supports far more than simple JavaBean
objects like this one. In addition to the sophisticated set of annotations [https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations], you can even
write your custom serializers and deserializers.

Now that we’ve got our representation class, it makes sense to start in on the resource it
represents.

Creating A Resource Class

Jersey resources are the meat-and-potatoes of a Dropwizard application. Each resource class is
associated with a URI template. For our application, we need a resource which returns new Saying
instances from the URI /hello-world, so our resource class looks like this:

package com.example.helloworld.resources;

import com.example.helloworld.api.Saying;
import com.codahale.metrics.annotation.Timed;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.MediaType;
import java.util.concurrent.atomic.AtomicLong;
import java.util.Optional;

@Path("/hello-world")
@Produces(MediaType.APPLICATION_JSON)
public class HelloWorldResource {
 private final String template;
 private final String defaultName;
 private final AtomicLong counter;

 public HelloWorldResource(String template, String defaultName) {
 this.template = template;
 this.defaultName = defaultName;
 this.counter = new AtomicLong();
 }

 @GET
 @Timed
 public Saying sayHello(@QueryParam("name") Optional<String> name) {
 final String value = String.format(template, name.orElse(defaultName));
 return new Saying(counter.incrementAndGet(), value);
 }
}

Finally, we’re in the thick of it! Let’s start from the top and work our way down.

HelloWorldResource has two annotations: @Path and @Produces. @Path("/hello-world")
tells Jersey that this resource is accessible at the URI /hello-world, and
@Produces(MediaType.APPLICATION_JSON) lets Jersey’s content negotiation code know that this
resource produces representations which are application/json.

HelloWorldResource takes two parameters for construction: the template it uses to produce
the saying and the defaultName used when the user declines to tell us their name. An
AtomicLong provides us with a cheap, thread-safe way of generating unique(ish) IDs.

Warning

Resource classes are used by multiple threads concurrently. In general, we recommend that
resources be stateless/immutable, but it’s important to keep the context in mind.

#sayHello(Optional<String>) is the meat of this class, and it’s a fairly simple method. The
@QueryParam("name") annotation tells Jersey to map the name parameter from the query string
to the name parameter in the method. If the client sends a request to
/hello-world?name=Dougie, sayHello will be called with Optional.of("Dougie"); if there
is no name parameter in the query string, sayHello will be called with
Optional.absent(). (Support for Guava’s Optional is a little extra sauce that Dropwizard
adds to Jersey’s existing functionality.)

Note

If the client sends a request to /hello-world?name=, sayHello will be called with
Optional.of(""). This may seem odd at first, but this follows the standards (an application
may have different behavior depending on if a parameter is empty vs nonexistent). You can swap
Optional<String> parameter with NonEmptyStringParam if you want /hello-world?name=
to return “Hello, Stranger!” For more information on resource parameters see
the documentation

Inside the sayHello method, we increment the counter, format the template using
String.format(String, Object...), and return a new Saying instance.

Because sayHello is annotated with @Timed, Dropwizard automatically records the duration and
rate of its invocations as a Metrics Timer.

Once sayHello has returned, Jersey takes the Saying instance and looks for a provider class
which can write Saying instances as application/json. Dropwizard has one such provider built
in which allows for producing and consuming Java objects as JSON objects. The provider writes out
the JSON and the client receives a 200 OK response with a content type of application/json.

Registering A Resource

Before that will actually work, though, we need to go back to HelloWorldApplication and add this
new resource class. In its run method we can read the template and default name from the
HelloWorldConfiguration instance, create a new HelloWorldResource instance, and then add
it to the application’s Jersey environment:

@Override
public void run(HelloWorldConfiguration configuration,
 Environment environment) {
 final HelloWorldResource resource = new HelloWorldResource(
 configuration.getTemplate(),
 configuration.getDefaultName()
);
 environment.jersey().register(resource);
}

When our application starts, we create a new instance of our resource class with the parameters from
the configuration file and hand it off to the Environment, which acts like a registry of all the
things your application can do.

Note

A Dropwizard application can contain many resource classes, each corresponding to its own URI
pattern. Just add another @Path-annotated resource class and call register with an
instance of the new class.

Before we go too far, we should add a health check for our application.

Creating A Health Check

Health checks give you a way of adding small tests to your application to allow you to verify that
your application is functioning correctly in production. We strongly recommend that all of your
applications have at least a minimal set of health checks.

Note

We recommend this so strongly, in fact, that Dropwizard will nag you should you neglect to add a
health check to your project.

Since formatting strings is not likely to fail while an application is running (unlike, say, a
database connection pool), we’ll have to get a little creative here. We’ll add a health check to
make sure we can actually format the provided template:

package com.example.helloworld.health;

import com.codahale.metrics.health.HealthCheck;

public class TemplateHealthCheck extends HealthCheck {
 private final String template;

 public TemplateHealthCheck(String template) {
 this.template = template;
 }

 @Override
 protected Result check() throws Exception {
 final String saying = String.format(template, "TEST");
 if (!saying.contains("TEST")) {
 return Result.unhealthy("template doesn't include a name");
 }
 return Result.healthy();
 }
}

TemplateHealthCheck checks for two things: that the provided template is actually a well-formed
format string, and that the template actually produces output with the given name.

If the string is not a well-formed format string (for example, someone accidentally put
Hello, %s% in the configuration file), then String.format(String, Object...) will throw an
IllegalFormatException and the health check will implicitly fail. If the rendered saying doesn’t
include the test string, the health check will explicitly fail by returning an unhealthy Result.

Adding A Health Check

As with most things in Dropwizard, we create a new instance with the appropriate parameters and add
it to the Environment:

@Override
public void run(HelloWorldConfiguration configuration,
 Environment environment) {
 final HelloWorldResource resource = new HelloWorldResource(
 configuration.getTemplate(),
 configuration.getDefaultName()
);
 final TemplateHealthCheck healthCheck =
 new TemplateHealthCheck(configuration.getTemplate());
 environment.healthChecks().register("template", healthCheck);
 environment.jersey().register(resource);
}

Now we’re almost ready to go!

Building Fat JARs

We recommend that you build your Dropwizard applications as “fat” JAR files — single .jar files
which contain all of the .class files required to run your application. This allows you to
build a single deployable artifact which you can promote from your staging environment to your QA
environment to your production environment without worrying about differences in installed
libraries. To start building our Hello World application as a fat JAR, we need to configure a Maven
plugin called maven-shade. In the <build><plugins> section of your pom.xml file, add
this:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <createDependencyReducedPom>true</createDependencyReducedPom>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>META-INF/*.SF</exclude>
 <exclude>META-INF/*.DSA</exclude>
 <exclude>META-INF/*.RSA</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
 <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
 <mainClass>com.example.helloworld.HelloWorldApplication</mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
</plugin>

This configures Maven to do a couple of things during its package phase:

	Produce a pom.xml file which doesn’t include dependencies for the libraries whose contents are
included in the fat JAR.

	Exclude all digital signatures from signed JARs. If you don’t, then Java considers the signature
invalid and won’t load or run your JAR file.

	Collate the various META-INF/services entries in the JARs instead of overwriting them.
(Neither Dropwizard nor Jersey works without those.)

	Set com.example.helloworld.HelloWorldApplication as the JAR’s MainClass. This will allow
you to run the JAR using java -jar.

Warning

If your application has a dependency which must be signed (e.g., a JCA/JCE [http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html] provider or
other trusted library), you have to add an exclusion [http://maven.apache.org/plugins/maven-shade-plugin/examples/includes-excludes.html] to the maven-shade-plugin
configuration for that library and include that JAR in the classpath.

Warning

Since Dropwizard is using the Java ServiceLoader [http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html] functionality to register and load extensions,
the minimizeJar [https://maven.apache.org/plugins/maven-shade-plugin/shade-mojo.html#minimizeJar] option of the maven-shade-plugin will lead to non-working application JARs.

Versioning Your JARs

Dropwizard can also use the project version if it’s embedded in the JAR’s manifest as the
Implementation-Version. To embed this information using Maven, add the following to the
<build><plugins> section of your pom.xml file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <archive>
 <manifest>
 <addDefaultImplementationEntries>true</addDefaultImplementationEntries>
 </manifest>
 </archive>
 </configuration>
</plugin>

This can be handy when trying to figure out what version of your application you have deployed on a
machine.

Once you’ve got that configured, go into your project directory and run mvn package (or run the
package goal from your IDE). You should see something like this:

[INFO] Including org.eclipse.jetty:jetty-util:jar:7.6.0.RC0 in the shaded jar.
[INFO] Including com.google.guava:guava:jar:10.0.1 in the shaded jar.
[INFO] Including com.google.code.findbugs:jsr305:jar:1.3.9 in the shaded jar.
[INFO] Including org.hibernate:hibernate-validator:jar:4.2.0.Final in the shaded jar.
[INFO] Including javax.validation:validation-api:jar:1.0.0.GA in the shaded jar.
[INFO] Including org.yaml:snakeyaml:jar:1.9 in the shaded jar.
[INFO] Replacing original artifact with shaded artifact.
[INFO] Replacing /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-SNAPSHOT.jar with /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-SNAPSHOT-shaded.jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 8.415s
[INFO] Finished at: Fri Dec 02 16:26:42 PST 2011
[INFO] Final Memory: 11M/81M
[INFO] --

Congratulations! You’ve built your first Dropwizard project! Now it’s time to run it!

Running Your Application

Now that you’ve built a JAR file, it’s time to run it.

In your project directory, run this:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar

You should see something like the following:

usage: java -jar hello-world-0.0.1-SNAPSHOT.jar
 [-h] [-v] {server} ...

positional arguments:
 {server} available commands

optional arguments:
 -h, --help show this help message and exit
 -v, --version show the service version and exit

Dropwizard takes the first command line argument and dispatches it to a matching command. In this
case, the only command available is server, which runs your application as an HTTP server. The
server command requires a configuration file, so let’s go ahead and give it
the YAML file we previously saved:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar server hello-world.yml

You should see something like the following:

INFO [2011-12-03 00:38:32,927] io.dropwizard.cli.ServerCommand: Starting hello-world
INFO [2011-12-03 00:38:32,931] org.eclipse.jetty.server.Server: jetty-7.x.y-SNAPSHOT
INFO [2011-12-03 00:38:32,936] org.eclipse.jetty.server.handler.ContextHandler: started o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:32,999] com.sun.jersey.server.impl.application.WebApplicationImpl: Initiating Jersey application, version 'Jersey: 1.10 11/02/2011 03:53 PM'
INFO [2011-12-03 00:38:33,041] io.dropwizard.setup.Environment:

 GET /hello-world (com.example.helloworld.resources.HelloWorldResource)

INFO [2011-12-03 00:38:33,215] org.eclipse.jetty.server.handler.ContextHandler: started o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:33,235] org.eclipse.jetty.server.AbstractConnector: Started BlockingChannelConnector@0.0.0.0:8080 STARTING
INFO [2011-12-03 00:38:33,238] org.eclipse.jetty.server.AbstractConnector: Started SocketConnector@0.0.0.0:8081 STARTING

Your Dropwizard application is now listening on ports 8080 for application requests and 8081
for administration requests. If you press ^C, the application will shut down gracefully, first
closing the server socket, then waiting for in-flight requests to be processed, then shutting down
the process itself.

However, while it’s up, let’s give it a whirl!
Click here to say hello! [http://localhost:8080/hello-world]
Click here to get even friendlier! [http://localhost:8080/hello-world?name=Successful+Dropwizard+User]

So, we’re generating sayings. Awesome. But that’s not all your application can do. One of the main
reasons for using Dropwizard is the out-of-the-box operational tools it provides, all of which can
be found on the admin port [http://localhost:8081/].

If you click through to the metrics resource [http://localhost:8081/metrics], you can see all of
your application’s metrics represented as a JSON object.

The threads resource [http://localhost:8081/threads] allows you to quickly get a thread dump of
all the threads running in that process.

Hint

When a Jetty worker thread is handling an incoming HTTP request, the thread name is set to
the method and URI of the request. This can be very helpful when debugging a
poorly-behaving request.

The healthcheck resource [http://localhost:8081/healthcheck] runs the
health check class we wrote. You should see something like this:

* deadlocks: OK
* template: OK

template here is the result of your TemplateHealthCheck, which unsurprisingly passed.
deadlocks is a built-in health check which looks for deadlocked JVM threads and prints out a
listing if any are found.

Next Steps

Well, congratulations. You’ve got a Hello World application ready for production (except for the
lack of tests) that’s capable of doing 30,000-50,000 requests per second. Hopefully, you’ve gotten a
feel for how Dropwizard combines Jetty, Jersey, Jackson, and other stable, mature libraries to
provide a phenomenal platform for developing RESTful web applications.

There’s a lot more to Dropwizard than is covered here (commands, bundles, servlets, advanced
configuration, validation, HTTP clients, database clients, views, etc.), all of which is covered by
the User Manual.

User Manual

The goal of this document is to provide you with all the information required to build,
organize, test, deploy, and maintain Dropwizard-based applications. If you’re new to
Dropwizard, you should read the Getting Started guide first.

	Dropwizard Core

	Dropwizard Client

	Dropwizard JDBI

	Dropwizard JDBI3

	Dropwizard Migrations

	Dropwizard Hibernate

	Dropwizard Authentication

	Dropwizard Forms

	Dropwizard Validation

	Dropwizard Views

	Dropwizard & Scala

	Testing Dropwizard

	Dropwizard Example, Step by Step

	Dropwizard Configuration Reference

	Dropwizard Internals

Dropwizard Core

The dropwizard-core module provides you with everything you’ll need for most of your
applications.

It includes:

	Jetty, a high-performance HTTP server.

	Jersey, a full-featured RESTful web framework.

	Jackson, the best JSON library for the JVM.

	Metrics, an excellent library for application metrics.

	Guava, Google’s excellent utility library.

	Logback, the successor to Log4j, Java’s most widely-used logging framework.

	Hibernate Validator, the reference implementation of the Java Bean Validation standard.

Dropwizard consists mostly of glue code to automatically connect and configure these components.

Organizing Your Project

If you plan on developing a client library for other developers to access your service, we recommend
you separate your projects into three Maven modules: project-api, project-client, and
project-application.

project-api should contain your Representations; project-client should use
those classes and an HTTP client to implement a full-fledged client for your
application, and project-application should provide the actual application implementation, including
Resources.

To give a concrete example of this project structure, let’s say we wanted to create a Stripe [https://stripe.com/docs/api/java]-like
API where clients can issue charges and the server would echo the charge back to the client.
stripe-api project would hold our Charge object as both the server and client want to work
with the charge and to promote code reuse, Charge objects are stored in a shared module.
stripe-app is the Dropwizard application. stripe-client abstracts away the raw HTTP
interactions and deserialization logic. Instead of using a HTTP client, users of stripe-client
would just pass in a Charge object to a function and behind the scenes, stripe-client will
call the HTTP endpoint. The client library may also take care of connection pooling, and may
provide a more friendly way of interpreting error messages. Basically, distributing a client library
for your app will help other developers integrate more quickly with the service.

If you are not planning on distributing a client library for developers, one
can combine project-api and project-application into a single project,
which tends to look like this:

	com.example.myapplication:

	api: Representations. Request and response bodies.

	cli: Commands

	client: Client code that accesses external HTTP services.

	core: Domain implementation; where objects not used in the API such as POJOs, validations, crypto, etc, reside.

	jdbi: Database access classes

	health: Health Checks

	resources: Resources

	MyApplication: The application class

	MyApplicationConfiguration: configuration class

Application

The main entry point into a Dropwizard application is, unsurprisingly, the Application class. Each
Application has a name, which is mostly used to render the command-line interface. In the
constructor of your Application you can add Bundles and Commands to
your application.

Configuration

Dropwizard provides a number of built-in configuration parameters. They are
well documented in the example project’s configuration [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml] and configuration reference.

Each Application subclass has a single type parameter: that of its matching Configuration
subclass. These are usually at the root of your application’s main package. For example, your User
application would have two classes: UserApplicationConfiguration, extending Configuration, and
UserApplication, extending Application<UserApplicationConfiguration>.

When your application runs Configured Commands like the server command, Dropwizard
parses the provided YAML configuration file and builds an instance of your application’s configuration
class by mapping YAML field names to object field names.

Note

If your configuration file doesn’t end in .yml or .yaml, Dropwizard tries to parse it
as a JSON file.

To keep your configuration file and class manageable, we recommend grouping related
configuration parameters into independent configuration classes. If your application requires a set of
configuration parameters in order to connect to a message queue, for example, we recommend that you
create a new MessageQueueFactory class:

public class MessageQueueFactory {
 @NotEmpty
 private String host;

 @Min(1)
 @Max(65535)
 private int port = 5672;

 @JsonProperty
 public String getHost() {
 return host;
 }

 @JsonProperty
 public void setHost(String host) {
 this.host = host;
 }

 @JsonProperty
 public int getPort() {
 return port;
 }

 @JsonProperty
 public void setPort(int port) {
 this.port = port;
 }

 public MessageQueueClient build(Environment environment) {
 MessageQueueClient client = new MessageQueueClient(getHost(), getPort());
 environment.lifecycle().manage(new Managed() {
 @Override
 public void start() {
 }

 @Override
 public void stop() {
 client.close();
 }
 });
 return client;
 }
}

In this example our factory will automatically tie our MessageQueueClient connection to the
lifecycle of our application’s Environment.

Your main Configuration subclass can then include this as a member field:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 private MessageQueueFactory messageQueue = new MessageQueueFactory();

 @JsonProperty("messageQueue")
 public MessageQueueFactory getMessageQueueFactory() {
 return messageQueue;
 }

 @JsonProperty("messageQueue")
 public void setMessageQueueFactory(MessageQueueFactory factory) {
 this.messageQueue = factory;
 }
}

And your Application subclass can then use your factory to directly construct a client for the
message queue:

public void run(ExampleConfiguration configuration,
 Environment environment) {
 MessageQueueClient messageQueue = configuration.getMessageQueueFactory().build(environment);
}

Then, in your application’s YAML file, you can use a nested messageQueue field:

messageQueue:
 host: mq.example.com
 port: 5673

The @NotNull, @NotEmpty, @Min, @Max, and @Valid annotations are part of
Dropwizard Validation functionality. If your YAML configuration file’s
messageQueue.host field was missing (or was a blank string), Dropwizard would refuse to start
and would output an error message describing the issues.

Once your application has parsed the YAML file and constructed its Configuration instance,
Dropwizard then calls your Application subclass to initialize your application’s Environment.

Note

You can override configuration settings by passing special Java system properties when starting
your application. Overrides must start with prefix dw., followed by the path to the
configuration value being overridden.

For example, to override the Logging level, you could start your application like this:

java -Ddw.logging.level=DEBUG server my-config.json

This will work even if the configuration setting in question does not exist in your config file, in
which case it will get added.

You can override configuration settings in arrays of objects like this:

java -Ddw.server.applicationConnectors[0].port=9090 server my-config.json

You can override configuration settings in maps like this:

java -Ddw.database.properties.hibernate.hbm2ddl.auto=none server my-config.json

You can also override a configuration setting that is an array of strings by using the ‘,’ character
as an array element separator. For example, to override a configuration setting myapp.myserver.hosts
that is an array of strings in the configuration, you could start your service like this:
java -Ddw.myapp.myserver.hosts=server1,server2,server3 server my-config.json

If you need to use the ‘,’ character in one of the values, you can escape it by using ‘\,’ instead.

The array override facility only handles configuration elements that are arrays of simple strings.
Also, the setting in question must already exist in your configuration file as an array;
this mechanism will not work if the configuration key being overridden does not exist in your configuration
file. If it does not exist or is not an array setting, it will get added as a simple string setting, including
the ‘,’ characters as part of the string.

Environment variables

The dropwizard-configuration module also provides the capabilities to substitute configuration settings with the
value of environment variables using a SubstitutingSourceProvider and EnvironmentVariableSubstitutor.

public class MyApplication extends Application<MyConfiguration> {
 // [...]
 @Override
 public void initialize(Bootstrap<MyConfiguration> bootstrap) {
 // Enable variable substitution with environment variables
 bootstrap.setConfigurationSourceProvider(
 new SubstitutingSourceProvider(bootstrap.getConfigurationSourceProvider(),
 new EnvironmentVariableSubstitutor(false)
)
);

 }

 // [...]
}

The configuration settings which should be substituted need to be explicitly written in the configuration file and
follow the substitution rules of StrSubstitutor [https://commons.apache.org/proper/commons-lang/javadocs/api-release/org/apache/commons/lang3/text/StrSubstitutor.html] from the Apache Commons Lang library.

mySetting: ${DW_MY_SETTING}
defaultSetting: ${DW_DEFAULT_SETTING:-default value}

In general SubstitutingSourceProvider isn’t restricted to substitute environment variables but can be used to replace
variables in the configuration source with arbitrary values by passing a custom StrSubstitutor implementation.

SSL

SSL support is built into Dropwizard. You will need to provide your own java
keystore, which is outside the scope of this document (keytool is the
command you need, and Jetty’s documentation [http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html] can get you started). There is a
test keystore you can use in the Dropwizard example project [https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example].

server:
 applicationConnectors:
 - type: https
 port: 8443
 keyStorePath: example.keystore
 keyStorePassword: example
 validateCerts: false

By default, only secure TLSv1.2 cipher suites are allowed. Older versions of cURL, Java 6 and 7, and
other clients may be unable to communicate with the allowed cipher suites, but this was a conscious
decision that sacrifices interoperability for security.

Dropwizard allows a workaround by specifying a customized list of cipher suites. If no lists of
supported protocols or cipher suites are specified, then the JVM defaults are used. If no lists of
excluded protocols or cipher suites are specified, then the defaults are inherited from Jetty.

The following list of excluded cipher suites will allow for TLSv1 and TLSv1.1 clients to negotiate a
connection similar to pre-Dropwizard 1.0.

server:
 applicationConnectors:
 - type: https
 port: 8443
 excludedCipherSuites:
 - SSL_RSA_WITH_DES_CBC_SHA
 - SSL_DHE_RSA_WITH_DES_CBC_SHA
 - SSL_DHE_DSS_WITH_DES_CBC_SHA
 - SSL_RSA_EXPORT_WITH_RC4_40_MD5
 - SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
 - SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
 - SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Since the version 9.4.8 (Dropwizard 1.2.3) Jetty supports native SSL via Google’s Conscrypt [https://github.com/google/conscrypt] which uses BoringSSL [https://github.com/google/boringssl]
(Google’s fork of OpenSSL) for handling cryptography. You can enable it in Dropwizard by registering the provider
in your app:

<dependency>
 <groupId>org.conscrypt</groupId>
 <artifactId>conscrypt-openjdk-uber</artifactId>
 <version>${conscrypt.version}</version>
</dependency>

static {
 Security.addProvider(new OpenSSLProvider());
}

and setting the JCE provider in the configuration:

server:
 type: simple
 connector:
 type: https
 jceProvider: Conscrypt

For HTTP/2 servers you need to add an ALPN Conscrypt provider as a dependency.

<dependency>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-alpn-conscrypt-server</artifactId>
</dependency>

Bootstrapping

Before a Dropwizard application can provide the command-line interface, parse a configuration file, or
run as a server, it must first go through a bootstrapping phase. This phase corresponds to your
Application subclass’s initialize method. You can add Bundles,
Commands, or register Jackson modules to allow you to include custom types as part
of your configuration class.

Environments

A Dropwizard Environment consists of all the Resources, servlets, filters,
Health Checks, Jersey providers, Managed Objects, Tasks, and
Jersey properties which your application provides.

Each Application subclass implements a run method. This is where you should be creating new
resource instances, etc., and adding them to the given Environment class:

@Override
public void run(ExampleConfiguration config,
 Environment environment) {
 // encapsulate complicated setup logic in factories
 final Thingy thingy = config.getThingyFactory().build();

 environment.jersey().register(new ThingyResource(thingy));
 environment.healthChecks().register("thingy", new ThingyHealthCheck(thingy));
}

It’s important to keep the run method clean, so if creating an instance of something is
complicated, like the Thingy class above, extract that logic into a factory.

Health Checks

A health check is a runtime test which you can use to verify your application’s behavior in its
production environment. For example, you may want to ensure that your database client is connected
to the database:

public class DatabaseHealthCheck extends HealthCheck {
 private final Database database;

 public DatabaseHealthCheck(Database database) {
 this.database = database;
 }

 @Override
 protected Result check() throws Exception {
 if (database.isConnected()) {
 return Result.healthy();
 } else {
 return Result.unhealthy("Cannot connect to " + database.getUrl());
 }
 }
}

You can then add this health check to your application’s environment:

environment.healthChecks().register("database", new DatabaseHealthCheck(database));

By sending a GET request to /healthcheck on the admin port you can run these tests and view
the results:

$ curl http://dw.example.com:8081/healthcheck
{"deadlocks":{"healthy":true},"database":{"healthy":true}}

If all health checks report success, a 200 OK is returned. If any fail, a
500 Internal Server Error is returned with the error messages and exception stack traces (if an
exception was thrown).

All Dropwizard applications ship with the deadlocks health check installed by default, which uses
Java 1.6’s built-in thread deadlock detection to determine if any threads are deadlocked.

Managed Objects

Most applications involve objects which need to be started and stopped: thread pools, database
connections, etc. Dropwizard provides the Managed interface for this. You can either have the
class in question implement the #start() and #stop() methods, or write a wrapper class which
does so. Adding a Managed instance to your application’s Environment ties that object’s
lifecycle to that of the application’s HTTP server. Before the server starts, the #start() method is
called. After the server has stopped (and after its graceful shutdown period) the #stop() method
is called.

For example, given a theoretical Riak [http://basho.com/products/] client which needs to be started and stopped:

public class RiakClientManager implements Managed {
 private final RiakClient client;

 public RiakClientManager(RiakClient client) {
 this.client = client;
 }

 @Override
 public void start() throws Exception {
 client.start();
 }

 @Override
 public void stop() throws Exception {
 client.stop();
 }
}

public class MyApplication extends Application<MyConfiguration>{
 @Override
 public void run(MyApplicationConfiguration configuration, Environment environment) {
 RiakClient client = ...;
 RiakClientManager riakClientManager = new RiakClientManager(client);
 environment.lifecycle().manage(riakClientManager);
 }
}

If RiakClientManager#start() throws an exception–e.g., an error connecting to the server–your
application will not start and a full exception will be logged. If RiakClientManager#stop() throws
an exception, the exception will be logged but your application will still be able to shut down.

It should be noted that Environment has built-in factory methods for ExecutorService and
ScheduledExecutorService instances which are managed. See LifecycleEnvironment#executorService
and LifecycleEnvironment#scheduledExecutorService for details.

Bundles

A Dropwizard bundle is a reusable group of functionality, used to define blocks of an application’s
behavior. For example, AssetBundle from the dropwizard-assets module provides a simple way
to serve static assets from your application’s src/main/resources/assets directory as files
available from /assets/* (or any other path) in your application.

Configured Bundles

Some bundles require configuration parameters. These bundles implement ConfiguredBundle and will
require your application’s Configuration subclass to implement a specific interface.

For example: given the configured bundle MyConfiguredBundle and the interface MyConfiguredBundleConfig below.
Your application’s Configuration subclass would need to implement MyConfiguredBundleConfig.

public class MyConfiguredBundle implements ConfiguredBundle<MyConfiguredBundleConfig>{

 @Override
 public void run(MyConfiguredBundleConfig applicationConfig, Environment environment) {
 applicationConfig.getBundleSpecificConfig();
 }

 @Override
 public void initialize(Bootstrap<?> bootstrap) {

 }
}

public interface MyConfiguredBundleConfig{

 String getBundleSpecificConfig();

}

Serving Assets

Either your application or your static assets can be served from the root path, but
not both. The latter is useful when using Dropwizard to back a Javascript
application. To enable it, move your application to a sub-URL.

server:
 rootPath: /api/

Note

If you use the Simple server configuration, then rootPath is calculated relatively from
applicationContextPath. So, your API will be accessible from the path /application/api/

Then use an extended AssetsBundle constructor to serve resources in the
assets folder from the root path. index.htm is served as the default
page.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {
 bootstrap.addBundle(new AssetsBundle("/assets/", "/"));
}

When an AssetBundle is added to the application, it is registered as a servlet
using a default name of assets. If the application needs to have multiple AssetBundle
instances, the extended constructor should be used to specify a unique name for the AssetBundle.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {
 bootstrap.addBundle(new AssetsBundle("/assets/css", "/css", null, "css"));
 bootstrap.addBundle(new AssetsBundle("/assets/js", "/js", null, "js"));
 bootstrap.addBundle(new AssetsBundle("/assets/fonts", "/fonts", null, "fonts"));
}

SSL Reload

By registering the SslReloadBundle your application can have new certificate information
reloaded at runtime, so a restart is not necessary.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {
 bootstrap.addBundle(new SslReloadBundle());
}

To trigger a reload send a POST request to ssl-reload

curl -k -X POST 'https://localhost:<admin-port>/tasks/ssl-reload'

Dropwizard will use the same exact https configuration (keystore location, password, etc) when
performing the reload.

Note

If anything is wrong with the new certificate (eg. wrong password in keystore), no new
certificates are loaded. So if the application and admin ports use different certificates and
one of them is invalid, then none of them are reloaded.

A http 500 error is returned on reload failure, so make sure to trap for this error with
whatever tool is used to trigger a certificate reload, and alert the appropriate admin. If the
situation is not remedied, next time the app is stopped, it will be unable to start!

Commands

Commands are basic actions which Dropwizard runs based on the arguments provided on the command
line. The built-in server command, for example, spins up an HTTP server and runs your application.
Each Command subclass has a name and a set of command line options which Dropwizard will use to
parse the given command line arguments.

Below is an example on how to add a command and have Dropwizard recognize it.

public class MyCommand extends Command {
 public MyCommand() {
 // The name of our command is "hello" and the description printed is
 // "Prints a greeting"
 super("hello", "Prints a greeting");
 }

 @Override
 public void configure(Subparser subparser) {
 // Add a command line option
 subparser.addArgument("-u", "--user")
 .dest("user")
 .type(String.class)
 .required(true)
 .help("The user of the program");
 }

 @Override
 public void run(Bootstrap<?> bootstrap, Namespace namespace) throws Exception {
 System.out.println("Hello " + namespace.getString("user"));
 }
}

Dropwizard recognizes our command once we add it in the initialize stage of our application.

public class MyApplication extends Application<MyConfiguration>{
 @Override
 public void initialize(Bootstrap<DropwizardConfiguration> bootstrap) {
 bootstrap.addCommand(new MyCommand());
 }
}

To invoke the new functionality, run the following:

java -jar <jarfile> hello dropwizard

Configured Commands

Some commands require access to configuration parameters and should extend the ConfiguredCommand
class, using your application’s Configuration class as its type parameter. By default,
Dropwizard will treat the last argument on the command line as the path to a YAML configuration
file, parse and validate it, and provide your command with an instance of the configuration class.

A ConfiguredCommand can have additional command line options specified, while keeping the last
argument the path to the YAML configuration.

@Override
public void configure(Subparser subparser) {
 super.configure(subparser);

 // Add a command line option
 subparser.addArgument("-u", "--user")
 .dest("user")
 .type(String.class)
 .required(true)
 .help("The user of the program");
}

For more advanced customization of the command line (for example, having the configuration file
location specified by -c), adapt the ConfiguredCommand [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-core/src/main/java/io/dropwizard/cli/ConfiguredCommand.java] class as needed.

Tasks

A Task is a run-time action your application provides access to on the administrative port via HTTP.
All Dropwizard applications start with: the gc task, which explicitly triggers the JVM’s garbage
collection (This is useful, for example, for running full garbage collections during off-peak times
or while the given application is out of rotation.); and the log-level task, which configures the level
of any number of loggers at runtime (akin to Logback’s JmxConfigurator). The execute method of a Task
can be annotated with @Timed, @Metered, and @ExceptionMetered. Dropwizard will automatically
record runtime information about your tasks. Here’s a basic task class:

public class TruncateDatabaseTask extends Task {
 private final Database database;

 public TruncateDatabaseTask(Database database) {
 super("truncate");
 this.database = database;
 }

 @Override
 public void execute(ImmutableMultimap<String, String> parameters, PrintWriter output) throws Exception {
 this.database.truncate();
 }
}

You can then add this task to your application’s environment:

environment.admin().addTask(new TruncateDatabaseTask(database));

Running a task can be done by sending a POST request to /tasks/{task-name} on the admin
port. The task will receive any query parameters as arguments. For example:

$ curl -X POST http://dw.example.com:8081/tasks/gc
Running GC...
Done!

You can also extend PostBodyTask to create a task which uses the body of the post request. Here’s an example:

public class EchoTask extends PostBodyTask {
 public EchoTask() {
 super("echo");
 }

 @Override
 public void execute(ImmutableMultimap<String, String> parameters, String postBody, PrintWriter output) throws Exception {
 output.write(postBody);
 output.flush();
 }
}

Logging

Dropwizard uses Logback [http://logback.qos.ch/] for its logging backend. It provides an slf4j [http://www.slf4j.org/] implementation, and even
routes all java.util.logging, Log4j, and Apache Commons Logging usage through Logback.

slf4j provides the following logging levels:

	ERROR

	Error events that might still allow the application to continue running.

	WARN

	Potentially harmful situations.

	INFO

	Informational messages that highlight the progress of the application at coarse-grained level.

	DEBUG

	Fine-grained informational events that are most useful to debug an application.

	TRACE

	Finer-grained informational events than the DEBUG level.

Note

If you don’t want to use Logback, you can exclude it from Dropwizard and use an alternative logging configuration:

	Exclude Logback from the dropwizard-core artifact

<dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-core</artifactId>
 <version>{$dropwizard.version}</version>
 <exclusions>
 <exclusion>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 </exclusion>
 <exclusion>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-access</artifactId>
 </exclusion>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>log4j-over-slf4j</artifactId>
 </exclusion>
 </exclusions>
</dependency>

	Mark the logging configuration as external in your Dropwizard config

server:
 type: simple
 applicationContextPath: /application
 adminContextPath: /admin
 requestLog:
 type: external
logging:
 type: external

	Disable bootstrapping Logback in your application

public class ExampleApplication extends Application<ExampleConfiguration> {

 @Override
 protected void bootstrapLogging() {
 }
}

Log Format

Dropwizard’s log format has a few specific goals:

	Be human readable.

	Be machine parsable.

	Be easy for sleepy ops folks to figure out why things are pear-shaped at 3:30AM using standard
UNIXy tools like tail and grep.

The logging output looks like this:

TRACE [2010-04-06 06:42:35,271] com.example.dw.Thing: Contemplating doing a thing.
DEBUG [2010-04-06 06:42:35,274] com.example.dw.Thing: About to do a thing.
INFO [2010-04-06 06:42:35,274] com.example.dw.Thing: Doing a thing
WARN [2010-04-06 06:42:35,275] com.example.dw.Thing: Doing a thing
ERROR [2010-04-06 06:42:35,275] com.example.dw.Thing: This may get ugly.
! java.lang.RuntimeException: oh noes!
! at com.example.dw.Thing.run(Thing.java:16)
!

A few items of note:

	All timestamps are in UTC and ISO 8601 format.

	You can grep for messages of a specific level really easily:

tail -f dw.log | grep '^WARN'

	You can grep for messages from a specific class or package really easily:

tail -f dw.log | grep 'com.example.dw.Thing'

	You can even pull out full exception stack traces, plus the accompanying log message:

tail -f dw.log | grep -B 1 '^\!'

	The ! prefix does not apply to syslog appenders, as stack traces are sent separately from the main message.
Instead, t is used (this is the default value of the SyslogAppender that comes with Logback). This can be
configured with the stackTracePrefix option when defining your appender.

Configuration

You can specify a default logger level, override the levels of other loggers in your YAML configuration file,
and even specify appenders for them. The latter form of configuration is preferable, but the former is also
acceptable.

Logging settings.
logging:

 # The default level of all loggers. Can be OFF, ERROR, WARN, INFO, DEBUG, TRACE, or ALL.
 level: INFO

 # Logger-specific levels.
 loggers:

 # Overrides the level of com.example.dw.Thing and sets it to DEBUG.
 "com.example.dw.Thing": DEBUG

 # Enables the SQL query log and redirect it to a separate file
 "org.hibernate.SQL":
 level: DEBUG
 # This line stops org.hibernate.SQL (or anything under it) from using the root logger
 additive: false
 appenders:
 - type: file
 currentLogFilename: ./logs/example-sql.log
 archivedLogFilenamePattern: ./logs/example-sql-%d.log.gz
 archivedFileCount: 5

Console Logging

By default, Dropwizard applications log INFO and higher to STDOUT. You can configure this by
editing the logging section of your YAML configuration file:

logging:
 appenders:
 - type: console
 threshold: WARN
 target: stderr

In the above, we’re instead logging only WARN and ERROR messages to the STDERR device.

File Logging

Dropwizard can also log to an automatically rotated set of log files. This is the recommended
configuration for your production environment:

logging:

 appenders:
 - type: file
 # The file to which current statements will be logged.
 currentLogFilename: ./logs/example.log

 # When the log file rotates, the archived log will be renamed to this and gzipped. The
 # %d is replaced with the previous day (yyyy-MM-dd). Custom rolling windows can be created
 # by passing a SimpleDateFormat-compatible format as an argument: "%d{yyyy-MM-dd-hh}".
 archivedLogFilenamePattern: ./logs/example-%d.log.gz

 # The number of archived files to keep.
 archivedFileCount: 5

 # The timezone used to format dates. HINT: USE THE DEFAULT, UTC.
 timeZone: UTC

Syslog Logging

Finally, Dropwizard can also log statements to syslog.

Note

Because Java doesn’t use the native syslog bindings, your syslog server must have an open
network socket.

logging:

 appenders:
 - type: syslog
 # The hostname of the syslog server to which statements will be sent.
 # N.B.: If this is the local host, the local syslog instance will need to be configured to
 # listen on an inet socket, not just a Unix socket.
 host: localhost

 # The syslog facility to which statements will be sent.
 facility: local0

You can combine any number of different appenders, including multiple instances of the same
appender with different configurations:

logging:

 # Permit DEBUG, INFO, WARN and ERROR messages to be logged by appenders.
 level: DEBUG

 appenders:
 # Log warnings and errors to stderr
 - type: console
 threshold: WARN
 target: stderr

 # Log info, warnings and errors to our apps' main log.
 # Rolled over daily and retained for 5 days.
 - type: file
 threshold: INFO
 currentLogFilename: ./logs/example.log
 archivedLogFilenamePattern: ./logs/example-%d.log.gz
 archivedFileCount: 5

 # Log debug messages, info, warnings and errors to our apps' debug log.
 # Rolled over hourly and retained for 6 hours
 - type: file
 threshold: DEBUG
 currentLogFilename: ./logs/debug.log
 archivedLogFilenamePattern: ./logs/debug-%d{yyyy-MM-dd-hh}.log.gz
 archivedFileCount: 6

JSON Log Format

You may prefer to produce logs in a structured format such as JSON, so it can be processed by analytics or BI software.
For that, add a module to the project for supporting JSON layouts:

<dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-json-logging</artifactId>
 <version>${dropwizard.version}</version>
</dependency>

Setup the JSON layout in the configuration file.

For general logging:

logging:
 appenders:
 - type: console
 layout:
 type: json

The json layout will produces the following log message:

{"timestamp":1515002688000, "level":"INFO","logger":"org.eclipse.jetty.server.Server","thread":"main","message":"Started @6505ms"}

For request logging:

server:
 requestLog:
 appenders:
 - type: console
 layout:
 type: access-json

The access-json layout will produces the following log message:

{"timestamp":1515002688000, "method":"GET","uri":"/hello-world", "status":200, "protocol":"HTTP/1.1","contentLength":37,"remoteAddress":"127.0.0.1","requestTime":5, "userAgent":"Mozilla/5.0"}

Logging Configuration via HTTP

Active log levels can be changed during the runtime of a Dropwizard application via HTTP using
the LogConfigurationTask. For instance, to configure the log level for a
single Logger:

curl -X POST -d "logger=com.example.helloworld&level=INFO" http://localhost:8081/tasks/log-level

Logging Filters

Just because a statement has a level of INFO, doesn’t mean it should be logged with other INFO statements. One can create logging filters that will intercept log statements before they are written and decide if they’re allowed. Log filters can work on both regular statements and request log statements. The following example will be for request logging as there are many reasons why certain requests may be excluded from the log:

	Only log requests that have large bodies

	Only log requests that are slow

	Only log requests that resulted in a non-2xx status code

	Exclude requests that contain sensitive information in the URL

	Exclude healthcheck requests

The example will demonstrate excluding /secret requests from the log.

@JsonTypeName("secret-filter-factory")
public class SecretFilterFactory implements FilterFactory<IAccessEvent> {
 @Override
 public Filter<IAccessEvent> build() {
 return new Filter<IAccessEvent>() {
 @Override
 public FilterReply decide(IAccessEvent event) {
 if (event.getRequestURI().equals("/secret")) {
 return FilterReply.DENY;
 } else {
 return FilterReply.NEUTRAL;
 }
 }
 };
 }
}

Reference SecretFilterFactory type in our configuration.

server:
 requestLog:
 appenders:
 - type: console
 filterFactories:
 - type: secret-filter-factory

The last step is to add our class (in this case com.example.SecretFilterFactory) to META-INF/services/io.dropwizard.logging.filter.FilterFactory in our resources folder.

Testing Applications

All of Dropwizard’s APIs are designed with testability in mind, so even your applications can have unit
tests:

public class MyApplicationTest {
 private final Environment environment = mock(Environment.class);
 private final JerseyEnvironment jersey = mock(JerseyEnvironment.class);
 private final MyApplication application = new MyApplication();
 private final MyConfiguration config = new MyConfiguration();

 @Before
 public void setup() throws Exception {
 config.setMyParam("yay");
 when(environment.jersey()).thenReturn(jersey);
 }

 @Test
 public void buildsAThingResource() throws Exception {
 application.run(config, environment);

 verify(jersey).register(isA(ThingResource.class));
 }
}

We highly recommend Mockito [http://code.google.com/p/mockito/] for all your mocking needs.

Banners

We think applications should print out a big ASCII art banner on startup. Yours should, too. It’s fun.
Just add a banner.txt class to src/main/resources and it’ll print it out when your application
starts:

INFO [2011-12-09 21:56:37,209] io.dropwizard.cli.ServerCommand: Starting hello-world
 dP
 88
 .d8888b. dP. .dP .d8888b. 88d8b.d8b. 88d888b. 88 .d8888b.
 88ooood8 `8bd8' 88' `88 88'`88'`88 88' `88 88 88ooood8
 88. d88b. 88. .88 88 88 88 88. .88 88 88. ...
 `88888P' dP' `dP `88888P8 dP dP dP 88Y888P' dP `88888P'
 88
 dP

INFO [2011-12-09 21:56:37,214] org.eclipse.jetty.server.Server: jetty-7.6.0
...

We could probably make up an argument about why this is a serious devops best practice with high ROI
and an Agile Tool, but honestly we just enjoy this.

We recommend you use TAAG [http://patorjk.com/software/taag/] for all your ASCII art banner needs.

Resources

Unsurprisingly, most of your day-to-day work with a Dropwizard application will be in the resource
classes, which model the resources exposed in your RESTful API. Dropwizard uses Jersey [http://jersey.github.io/] for this,
so most of this section is just re-hashing or collecting various bits of Jersey documentation.

Jersey is a framework for mapping various aspects of incoming HTTP requests to POJOs and then
mapping various aspects of POJOs to outgoing HTTP responses. Here’s a basic resource class:

@Path("/{user}/notifications")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class NotificationsResource {
 private final NotificationStore store;

 public NotificationsResource(NotificationStore store) {
 this.store = store;
 }

 @GET
 public NotificationList fetch(@PathParam("user") LongParam userId,
 @QueryParam("count") @DefaultValue("20") IntParam count) {
 final List<Notification> notifications = store.fetch(userId.get(), count.get());
 if (notifications != null) {
 return new NotificationList(userId, notifications);
 }
 throw new WebApplicationException(Status.NOT_FOUND);
 }

 @POST
 public Response add(@PathParam("user") LongParam userId,
 @NotNull @Valid Notification notification) {
 final long id = store.add(userId.get(), notification);
 return Response.created(UriBuilder.fromResource(NotificationResource.class)
 .build(userId.get(), id))
 .build();
 }
}

This class provides a resource (a user’s list of notifications) which responds to GET and
POST requests to /{user}/notifications, providing and consuming application/json
representations. There’s quite a lot of functionality on display here, and this section will
explain in detail what’s in play and how to use these features in your application.

Paths

Important

Every resource class must have a @Path annotation.

The @Path annotation isn’t just a static string, it’s a URI Template [http://tools.ietf.org/html/draft-gregorio-uritemplate-07]. The {user} part
denotes a named variable, and when the template matches a URI the value of that variable will be
accessible via @PathParam-annotated method parameters.

For example, an incoming request for /1001/notifications would match the URI template, and the
value "1001" would be available as the path parameter named user.

If your application doesn’t have a resource class whose @Path URI template matches the URI of an
incoming request, Jersey will automatically return a 404 Not Found to the client.

Methods

Methods on a resource class which accept incoming requests are annotated with the HTTP methods they
handle: @GET, @POST, @PUT, @DELETE, @HEAD, @OPTIONS, @PATCH.

Support for arbitrary new methods can be added via the @HttpMethod annotation. They also must
be added to the list of allowed methods. This means, by default,
methods such as CONNECT and TRACE are blocked, and will return a 405 Method Not Allowed
response.

If a request comes in which matches a resource class’s path but has a method which the class doesn’t
support, Jersey will automatically return a 405 Method Not Allowed to the client.

The return value of the method (in this case, a NotificationList instance) is then mapped to the
negotiated media type this case, our resource only supports
JSON, and so the NotificationList is serialized to JSON using Jackson.

Metrics

Every resource method can be annotated with @Timed, @Metered, and @ExceptionMetered.
Dropwizard augments Jersey to automatically record runtime information about your resource methods.

	@Timed measures the duration of requests to a resource

	@Metered measures the rate at which the resource is accessed

	@ExceptionMetered measures how often exceptions occur processing the resource

Parameters

The annotated methods on a resource class can accept parameters which are mapped to from aspects of
the incoming request. The *Param annotations determine which part of the request the data is
mapped, and the parameter type determines how the data is mapped.

For example:

	A @PathParam("user")-annotated String takes the raw value from the user variable in
the matched URI template and passes it into the method as a String.

	A @QueryParam("count")-annotated IntParam parameter takes the first count value from
the request’s query string and passes it as a String to IntParam’s constructor.
IntParam (and all other io.dropwizard.jersey.params.* classes) parses the string
as an Integer, returning a 400 Bad Request if the value is malformed.

	A @FormParam("name")-annotated Set<String> parameter takes all the name values from a
posted form and passes them to the method as a set of strings.

	A *Param–annotated NonEmptyStringParam will interpret empty strings as absent strings,
which is useful in cases where the endpoint treats empty strings and absent strings as
interchangeable.

What’s noteworthy here is that you can actually encapsulate the vast majority of your validation
logic using specialized parameter objects. See AbstractParam for details.

Request Entities

If you’re handling request entities (e.g., an application/json object on a PUT request), you
can model this as a parameter without a *Param annotation. In the
example code, the add method provides a good example of
this:

@POST
public Response add(@PathParam("user") LongParam userId,
 @NotNull @Valid Notification notification) {
 final long id = store.add(userId.get(), notification);
 return Response.created(UriBuilder.fromResource(NotificationResource.class)
 .build(userId.get(), id)
 .build();
}

Jersey maps the request entity to any single, unbound parameter. In this case, because the resource
is annotated with @Consumes(MediaType.APPLICATION_JSON), it uses the Dropwizard-provided Jackson
support which, in addition to parsing the JSON and mapping it to an instance of Notification,
also runs that instance through Dropwizard’s Constraining Entities.

If the deserialized Notification isn’t valid, Dropwizard returns a 422 Unprocessable Entity
response to the client.

Note

If a request entity parameter is just annotated with @Valid, it is still allowed to be
null, so to ensure that the object is present and validated @NotNull @Valid is a
powerful combination.

Media Types

Jersey also provides full content negotiation, so if your resource class consumes
application/json but the client sends a text/plain entity, Jersey will automatically reply
with a 406 Not Acceptable. Jersey’s even smart enough to use client-provided q-values in
their Accept headers to pick the best response content type based on what both the client and
server will support.

Responses

If your clients are expecting custom headers or additional information (or, if you simply desire an
additional degree of control over your responses), you can return explicitly-built Response
objects:

return Response.noContent().language(Locale.GERMAN).build();

In general, though, we recommend you return actual domain objects if at all possible. It makes
testing resources much easier.

Error Handling

Almost as important as an application’s happy path (receiving expected input and returning expected
output) is an application behavior when something goes wrong.

If your resource class unintentionally throws an exception, Dropwizard will log that exception under
the ERROR level (including stack traces) and return a terse, safe application/json 500
Internal Server Error response. The response will contain an ID that can be grepped out the server
logs for additional information.

If your resource class needs to return an error to the client (e.g., the requested record doesn’t
exist), you have two options: throw a subclass of Exception or restructure your method to
return a Response. If at all possible, prefer throwing Exception instances to returning
Response objects, as that will make resource endpoints more self describing and easier to test.

The least instrusive way to map error conditions to a response is to throw a WebApplicationException:

@GET
@Path("/{collection}")
public Saying reduceCols(@PathParam("collection") String collection) {
 if (!collectionMap.containsKey(collection)) {
 final String msg = String.format("Collection %s does not exist", collection);
 throw new WebApplicationException(msg, Status.NOT_FOUND)
 }

 // ...
}

In this example a GET request to /foobar will return

{"code":404,"message":"Collection foobar does not exist"}

One can also take exceptions that your resource may throw and map them to appropriate responses. For instance,
an endpoint may throw IllegalArgumentException and it may be worthy enough of a response to warrant a
custom metric to track how often the event occurs. Here’s an example of such an ExceptionMapper

public class IllegalArgumentExceptionMapper implements ExceptionMapper<IllegalArgumentException> {
 private final Meter exceptions;
 public IllegalArgumentExceptionMapper(MetricRegistry metrics) {
 exceptions = metrics.meter(name(getClass(), "exceptions"));
 }

 @Override
 public Response toResponse(IllegalArgumentException e) {
 exceptions.mark();
 return Response.status(Status.BAD_REQUEST)
 .header("X-YOU-SILLY", "true")
 .type(MediaType.APPLICATION_JSON_TYPE)
 .entity(new ErrorMessage(Status.BAD_REQUEST.getStatusCode(),
 "You passed an illegal argument!"))
 .build();
 }
}

and then registering the exception mapper:

@Override
public void run(final MyConfiguration conf, final Environment env) {
 env.jersey().register(new IllegalArgumentExceptionMapper(env.metrics()));
 env.jersey().register(new Resource());
}

Overriding Default Exception Mappers

To override a specific exception mapper, register your own class that implements the same
ExceptionMapper<T> as one of the default. For instance, we can customize responses caused by
Jackson exceptions:

public class JsonProcessingExceptionMapper implements ExceptionMapper<JsonProcessingException> {
 @Override
 public Response toResponse(JsonProcessingException exception) {
 // create the response
 }
}

With this method, one doesn’t need to know what the default exception mappers are, as they are
overridden if the user supplies a conflicting mapper. While not preferential, one can also disable
all default exception mappers, by setting server.registerDefaultExceptionMappers to false.
See the class ExceptionMapperBinder for a list of the default exception mappers.

URIs

While Jersey doesn’t quite have first-class support for hyperlink-driven applications, the provided
UriBuilder functionality does quite well.

Rather than duplicate resource URIs, it’s possible (and recommended!) to initialize a UriBuilder
with the path from the resource class itself:

UriBuilder.fromResource(UserResource.class).build(user.getId());

Testing

As with just about everything in Dropwizard, we recommend you design your resources to be testable.
Dependencies which aren’t request-injected should be passed in via the constructor and assigned to
final fields.

Testing, then, consists of creating an instance of your resource class and passing it a mock.
(Again: Mockito [http://code.google.com/p/mockito/].)

public class NotificationsResourceTest {
 private final NotificationStore store = mock(NotificationStore.class);
 private final NotificationsResource resource = new NotificationsResource(store);

 @Test
 public void getsReturnNotifications() {
 final List<Notification> notifications = mock(List.class);
 when(store.fetch(1, 20)).thenReturn(notifications);

 final NotificationList list = resource.fetch(new LongParam("1"), new IntParam("20"));

 assertThat(list.getUserId(),
 is(1L));

 assertThat(list.getNotifications(),
 is(notifications));
 }
}

Caching

Adding a Cache-Control statement to your resource class is simple with Dropwizard:

@GET
@CacheControl(maxAge = 6, maxAgeUnit = TimeUnit.HOURS)
public String getCachableValue() {
 return "yay";
}

The @CacheControl annotation will take all of the parameters of the Cache-Control header.

Representations

Representation classes are classes which, when handled to various Jersey MessageBodyReader and
MessageBodyWriter providers, become the entities in your application’s API. Dropwizard heavily
favors JSON, but it’s possible to map from any POJO to custom formats and back.

Basic JSON

Jackson is awesome at converting regular POJOs to JSON and back. This file:

public class Notification {
 private String text;

 public Notification(String text) {
 this.text = text;
 }

 @JsonProperty
 public String getText() {
 return text;
 }

 @JsonProperty
 public void setText(String text) {
 this.text = text;
 }
}

gets converted into this JSON:

{
 "text": "hey it's the value of the text field"
}

If, at some point, you need to change the JSON field name or the Java field without affecting the
other, you can add an explicit field name to the @JsonProperty annotation.

If you prefer immutable objects rather than JavaBeans, that’s also doable:

public class Notification {
 private final String text;

 @JsonCreator
 public Notification(@JsonProperty("text") String text) {
 this.text = text;
 }

 @JsonProperty("text")
 public String getText() {
 return text;
 }
}

Advanced JSON

Not all JSON representations map nicely to the objects your application deals with, so it’s sometimes
necessary to use custom serializers and deserializers. Just annotate your object like this:

@JsonSerialize(using=FunkySerializer.class)
@JsonDeserialize(using=FunkyDeserializer.class)
public class Funky {
 // ...
}

Then make a FunkySerializer class which implements JsonSerializer<Funky> and a
FunkyDeserializer class which implements JsonDeserializer<Funky>.

Snake Case

A common issue with JSON is the disagreement between camelCase and snake_case field names.
Java and Javascript folks tend to like camelCase; Ruby, Python, and Perl folks insist on
snake_case. To make Dropwizard automatically convert field names to snake_case (and back),
just annotate the class with @JsonSnakeCase:

@JsonSnakeCase
public class Person {
 private final String firstName;

 @JsonCreator
 public Person(@JsonProperty String firstName) {
 this.firstName = firstName;
 }

 @JsonProperty
 public String getFirstName() {
 return firstName;
 }
}

This gets converted into this JSON:

{
 "first_name": "Coda"
}

Streaming Output

If your application happens to return lots of information, you may get a big performance and efficiency
bump by using streaming output. By returning an object which implements Jersey’s StreamingOutput
interface, your method can stream the response entity in a chunk-encoded output stream. Otherwise,
you’ll need to fully construct your return value and then hand it off to be sent to the client.

HTML Representations

For generating HTML pages, check out Dropwizard’s views support.

Custom Representations

Sometimes, though, you’ve got some wacky output format you need to produce or consume and no amount
of arguing will make JSON acceptable. That’s unfortunate but OK. You can add support for arbitrary
input and output formats by creating classes which implement Jersey’s MessageBodyReader<T> and
MessageBodyWriter<T> interfaces. (Make sure they’re annotated with @Provider and
@Produces("text/gibberish") or @Consumes("text/gibberish").) Once you’re done, just add
instances of them (or their classes if they depend on Jersey’s @Context injection) to your
application’s Environment on initialization.

Jersey filters

There might be cases when you want to filter out requests or modify them before they reach your Resources. Jersey
has a rich api for filters and interceptors [http://jersey.github.io/documentation/latest/filters-and-interceptors.html] that can be used directly in Dropwizard.
You can stop the request from reaching your resources by throwing a WebApplicationException. Alternatively,
you can use filters to modify inbound requests or outbound responses.

@Provider
public class DateNotSpecifiedFilter implements ContainerRequestFilter {
 @Override
 public void filter(ContainerRequestContext requestContext) throws IOException {
 String dateHeader = requestContext.getHeaderString(HttpHeaders.DATE);

 if (dateHeader == null) {
 Exception cause = new IllegalArgumentException("Date Header was not specified");
 throw new WebApplicationException(cause, Response.Status.BAD_REQUEST);
 }
 }
}

This example filter checks the request for the “Date” header, and denies the request if was missing. Otherwise,
the request is passed through.

Filters can be dynamically bound to resource methods using DynamicFeature [https://docs.oracle.com/javaee/7/api/javax/ws/rs/container/DynamicFeature.html]:

@Provider
public class DateRequiredFeature implements DynamicFeature {
 @Override
 public void configure(ResourceInfo resourceInfo, FeatureContext context) {
 if (resourceInfo.getResourceMethod().getAnnotation(DateRequired.class) != null) {
 context.register(DateNotSpecifiedFilter.class);
 }
 }
}

The DynamicFeature is invoked by the Jersey runtime when the application is started. In this example, the feature checks
for methods that are annotated with @DateRequired and registers the DateNotSpecified filter on those methods only.

You typically register the feature in your Application class, like so:

environment.jersey().register(DateRequiredFeature.class);

Servlet filters

Another way to create filters is by creating servlet filters. They offer a way to to register filters that apply both to servlet requests as well as resource requests.
Jetty comes with a few bundled [http://www.eclipse.org/jetty/documentation/current/advanced-extras.html] filters which may already suit your needs. If you want to create your own filter,
this example demonstrates a servlet filter analogous to the previous example:

public class DateNotSpecifiedServletFilter implements javax.servlet.Filter {
 // Other methods in interface omitted for brevity

 @Override
 public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException {
 if (request instanceof HttpServletRequest) {
 String dateHeader = ((HttpServletRequest) request).getHeader(HttpHeaders.DATE);

 if (dateHeader != null) {
 chain.doFilter(request, response); // This signals that the request should pass this filter
 } else {
 HttpServletResponse httpResponse = (HttpServletResponse) response;
 httpResponse.setStatus(HttpStatus.BAD_REQUEST_400);
 httpResponse.getWriter().print("Date Header was not specified");
 }
 }
 }
}

This servlet filter can then be registered in your Application class by wrapping it in FilterHolder and adding it to the application context together with a
specification for which paths this filter should active. Here’s an example:

environment.servlets().addFilter("DateNotSpecifiedServletFilter", new DateNotSpecifiedServletFilter())
 .addMappingForUrlPatterns(EnumSet.of(DispatcherType.REQUEST), true, "/*");

How it’s glued together

When your application starts up, it will spin up a Jetty HTTP server, see DefaultServerFactory.
This server will have two handlers, one for your application port and the other for your admin port.
The admin handler creates and registers the AdminServlet. This has a handle to all of the
application healthchecks and metrics via the ServletContext.

The application port has an HttpServlet as well, this is composed of DropwizardResourceConfig,
which is an extension of Jersey’s resource configuration that performs scanning to
find root resource and provider classes. Ultimately when you call
env.jersey().register(new SomeResource()),
you are adding to the DropwizardResourceConfig. This config is a jersey Application, so all of
your application resources are served from one Servlet

DropwizardResourceConfig is where the various ResourceMethodDispatchAdapter are registered to
enable the following functionality:

	Resource method requests with @Timed, @Metered, @ExceptionMetered are delegated to special dispatchers which decorate the metric telemetry

	Resources that return Guava Optional are unboxed. Present returns underlying type, and non-present 404s

	Resource methods that are annotated with @CacheControl are delegated to a special dispatcher that decorates on the cache control headers

	Enables using Jackson to parse request entities into objects and generate response entities from objects, all while performing validation

Dropwizard Client

The dropwizard-client module provides you with two different performant,
instrumented HTTP clients so you can integrate your service with other web
services: Apache HttpClient and Jersey Client.

Apache HttpClient

The underlying library for dropwizard-client is Apache’s HttpClient [http://hc.apache.org/httpcomponents-core-4.3.x/index.html], a full-featured,
well-tested HTTP client library.

To create a managed, instrumented HttpClient instance, your
configuration class needs an http client configuration instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 private HttpClientConfiguration httpClient = new HttpClientConfiguration();

 @JsonProperty("httpClient")
 public HttpClientConfiguration getHttpClientConfiguration() {
 return httpClient;
 }

 @JsonProperty("httpClient")
 public void setHttpClientConfiguration(HttpClientConfiguration httpClient) {
 this.httpClient = httpClient;
 }
}

Then, in your application’s run method, create a new HttpClientBuilder:

@Override
public void run(ExampleConfiguration config,
 Environment environment) {
 final HttpClient httpClient = new HttpClientBuilder(environment).using(config.getHttpClientConfiguration())
 .build(getName());
 environment.jersey().register(new ExternalServiceResource(httpClient));
}

Metrics

Dropwizard’s HttpClientBuilder actually gives you an instrumented subclass which tracks the
following pieces of data:

	org.apache.http.conn.ClientConnectionManager.available-connections

	The number the number idle connections ready to be used to execute requests.

	org.apache.http.conn.ClientConnectionManager.leased-connections

	The number of persistent connections currently being used to execute requests.

	org.apache.http.conn.ClientConnectionManager.max-connections

	The maximum number of allowed connections.

	org.apache.http.conn.ClientConnectionManager.pending-connections

	The number of connection requests being blocked awaiting a free connection

	org.apache.http.client.HttpClient.get-requests

	The rate at which GET requests are being sent.

	org.apache.http.client.HttpClient.post-requests

	The rate at which POST requests are being sent.

	org.apache.http.client.HttpClient.head-requests

	The rate at which HEAD requests are being sent.

	org.apache.http.client.HttpClient.put-requests

	The rate at which PUT requests are being sent.

	org.apache.http.client.HttpClient.delete-requests

	The rate at which DELETE requests are being sent.

	org.apache.http.client.HttpClient.options-requests

	The rate at which OPTIONS requests are being sent.

	org.apache.http.client.HttpClient.trace-requests

	The rate at which TRACE requests are being sent.

	org.apache.http.client.HttpClient.connect-requests

	The rate at which CONNECT requests are being sent.

	org.apache.http.client.HttpClient.move-requests

	The rate at which MOVE requests are being sent.

	org.apache.http.client.HttpClient.patch-requests

	The rate at which PATCH requests are being sent.

	org.apache.http.client.HttpClient.other-requests

	The rate at which requests with none of the above methods are being sent.

Note

The naming strategy for the metrics associated requests is configurable.
Specifically, the last part e.g. get-requests.
What is displayed is HttpClientMetricNameStrategies.METHOD_ONLY, you can
also include the host via HttpClientMetricNameStrategies.HOST_AND_METHOD
or a url without query string via HttpClientMetricNameStrategies.QUERYLESS_URL_AND_METHOD

Jersey Client

If HttpClient [http://hc.apache.org/httpcomponents-core-4.3.x/index.html] is too low-level for you, Dropwizard also supports Jersey’s Client API [https://jersey.github.io/documentation/2.24/client.html].
Jersey’s Client allows you to use all of the server-side media type support that your service
uses to, for example, deserialize application/json request entities as POJOs.

To create a managed, instrumented JerseyClient instance, your
configuration class needs an jersey client configuration instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 private JerseyClientConfiguration jerseyClient = new JerseyClientConfiguration();

 @JsonProperty("jerseyClient")
 public JerseyClientConfiguration getJerseyClientConfiguration() {
 return jerseyClient;
 }

 @JsonProperty("jerseyClient")
 public void setJerseyClientConfiguration(JerseyClientConfiguration jerseyClient) {
 this.jerseyClient = jerseyClient;
 }
}

Then, in your service’s run method, create a new JerseyClientBuilder:

@Override
public void run(ExampleConfiguration config,
 Environment environment) {

 final Client client = new JerseyClientBuilder(environment).using(config.getJerseyClientConfiguration())
 .build(getName());
 environment.jersey().register(new ExternalServiceResource(client));
}

Configuration

The Client that Dropwizard creates deviates from the Jersey Client Configuration defaults. The
default, in Jersey, is for a client to never timeout reading or connecting in a request, while in
Dropwizard, the default is 500 milliseconds.

There are a couple of ways to change this behavior. The recommended way is to modify the
YAML configuration. Alternatively, set the properties on
the JerseyClientConfiguration, which will take effect for all built clients. On a per client
basis, the configuration can be changed by utilizing the property method and, in this case,
the Jersey Client Properties [https://jersey.github.io/apidocs/2.24/jersey/org/glassfish/jersey/client/ClientProperties.html] can be used.

Warning

Do not try to change Jersey properties using Jersey Client Properties [https://jersey.github.io/apidocs/2.24/jersey/org/glassfish/jersey/client/ClientProperties.html] through the

withProperty(String propertyName, Object propertyValue)

method on the JerseyClientBuilder, because by default it’s configured by Dropwizard’s
HttpClientBuilder, so the Jersey properties are ignored.

Rx Usage

To increase the ergonomics of asynchronous client requests, Jersey allows creation of rx-clients [https://jersey.github.io/documentation/2.24/rx-client.html].
You can instruct Dropwizard to create such a client:

@Override
public void run(ExampleConfiguration config,
 Environment environment) {

 final RxClient<RxCompletionStageInvoker> client =
 new JerseyClientBuilder(environment)
 .using(config.getJerseyClientConfiguration())
 .buildRx(getName(), RxCompletionStageInvoker.class);
 environment.jersey().register(new ExternalServiceResource(client));
}

RxCompletionStageInvoker.class is the Java 8 implementation and can be added to the pom:

<dependency>
 <groupId>org.glassfish.jersey.ext.rx</groupId>
 <artifactId>jersey-rx-client-java8</artifactId>
</dependency>

Alternatively, there are RxJava, Guava, and JSR-166e implementations.

By allowing Dropwizard to create the rx-client, the same thread pool that is utilized by traditional
synchronous and asynchronous requests, is used for rx requests.

Proxy Authentication

The client can utilise a forward proxy, supporting both Basic and NTLM authentication schemes.
Basic Auth against a proxy is simple:

proxy:
 host: '192.168.52.11'
 port: 8080
 scheme : 'https'
 auth:
 username: 'secret'
 password: 'stuff'
 nonProxyHosts:
 - 'localhost'
 - '192.168.52.*'
 - '*.example.com'

NTLM Auth is configured by setting the the relevant windows properties.

proxy:
 host: '192.168.52.11'
 port: 8080
 scheme : 'https'
 auth:
 username: 'secret'
 password: 'stuff'
 authScheme: 'NTLM'
 realm: 'realm' # optional, defaults to ANY_REALM
 hostname: 'workstation' # optional, defaults to null but may be required depending on your AD environment
 domain: 'HYPERCOMPUGLOBALMEGANET' # optional, defaults to null but may be required depending on your AD environment
 credentialType: 'NT'
 nonProxyHosts:
 - 'localhost'
 - '192.168.52.*'
 - '*.example.com'

Dropwizard JDBI

The dropwizard-jdbi module provides you with managed access to JDBI [http://jdbi.org/jdbi2/], a flexible and
modular library for interacting with relational databases via SQL.

Warning

It is recommended that new projects use the Dropwizard JDBI3 module. Existing projects
can update by following JDBI’s migration guide [http://jdbi.org/#_upgrading_from_v2_to_v3].

Configuration

To create a managed, instrumented DBI instance, your
configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 private DataSourceFactory database = new DataSourceFactory();

 @JsonProperty("database")
 public void setDataSourceFactory(DataSourceFactory factory) {
 this.database = factory;
 }

 @JsonProperty("database")
 public DataSourceFactory getDataSourceFactory() {
 return database;
 }
}

Then, in your service’s run method, create a new DBIFactory:

@Override
public void run(ExampleConfiguration config, Environment environment) {
 final DBIFactory factory = new DBIFactory();
 final DBI jdbi = factory.build(environment, config.getDataSourceFactory(), "postgresql");
 final UserDAO dao = jdbi.onDemand(UserDAO.class);
 environment.jersey().register(new UserResource(dao));
}

This will create a new managed connection pool to the database, a
health check for connectivity to the database, and a new DBI
instance for you to use.

Your service’s configuration file will then look like this:

database:
 # the name of your JDBC driver
 driverClass: org.postgresql.Driver

 # the username
 user: pg-user

 # the password
 password: iAMs00perSecrEET

 # the JDBC URL
 url: jdbc:postgresql://db.example.com/db-prod

 # any properties specific to your JDBC driver:
 properties:
 charSet: UTF-8

 # the maximum amount of time to wait on an empty pool before throwing an exception
 maxWaitForConnection: 1s

 # the SQL query to run when validating a connection's liveness
 validationQuery: "/* MyService Health Check */ SELECT 1"

 # the timeout before a connection validation queries fail
 validationQueryTimeout: 3s

 # the minimum number of connections to keep open
 minSize: 8

 # the maximum number of connections to keep open
 maxSize: 32

 # whether or not idle connections should be validated
 checkConnectionWhileIdle: false

 # the amount of time to sleep between runs of the idle connection validation, abandoned cleaner and idle pool resizing
 evictionInterval: 10s

 # the minimum amount of time an connection must sit idle in the pool before it is eligible for eviction
 minIdleTime: 1 minute

Usage

We highly recommend you use JDBI’s SQL Objects API [http://jdbi.org/jdbi2/sql_object_overview/], which allows you to write DAO classes as
interfaces:

public interface MyDAO {
 @SqlUpdate("create table something (id int primary key, name varchar(100))")
 void createSomethingTable();

 @SqlUpdate("insert into something (id, name) values (:id, :name)")
 void insert(@Bind("id") int id, @Bind("name") String name);

 @SqlQuery("select name from something where id = :id")
 String findNameById(@Bind("id") int id);
}

final MyDAO dao = database.onDemand(MyDAO.class);

This ensures your DAO classes are trivially mockable, as well as encouraging you to extract mapping
code (e.g., ResultSet -> domain objects) into testable, reusable classes.

Exception Handling

By adding the DBIExceptionsBundle to your application, Dropwizard
will automatically unwrap any thrown SQLException or DBIException instances.
This is critical for debugging, since otherwise only the common wrapper exception’s stack trace is
logged.

Prepended Comments

If you’re using JDBI’s SQL Objects API [http://jdbi.org/jdbi2/sql_object_overview/] (and you should be), dropwizard-jdbi will
automatically prepend the SQL object’s class and method name to the SQL query as an SQL comment:

/* com.example.service.dao.UserDAO.findByName */
SELECT id, name, email
FROM users
WHERE name = 'Coda';

This will allow you to quickly determine the origin of any slow or misbehaving queries.

Library Support

dropwizard-jdbi supports a number of popular libraries data types that can be automatically
serialized into the appropriate SQL type. Here’s a list of what integration dropwizard-jdbi
provides:

	Guava: support for Optional<T> arguments and ImmutableList<T> and ImmutableSet<T> query results.

	Joda Time: support for DateTime arguments and DateTime fields in query results

	Java 8: support for Optional<T> and kin (OptionalInt, etc.) arguments and java.time [https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html] arguments.

Dropwizard JDBI3

The dropwizard-jdbi3 module provides you with managed access to JDBI [http://jdbi.org/], a flexible and
modular library for interacting with relational databases via SQL.

Configuration

To create a managed, instrumented Jdbi instance, your
configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 private DataSourceFactory database = new DataSourceFactory();

 @JsonProperty("database")
 public void setDataSourceFactory(DataSourceFactory factory) {
 this.database = factory;
 }

 @JsonProperty("database")
 public DataSourceFactory getDataSourceFactory() {
 return database;
 }
}

Then, in your service’s run method, create a new JdbiFactory:

@Override
public void run(ExampleConfiguration config, Environment environment) {
 final JdbiFactory factory = new JdbiFactory();
 final Jdbi jdbi = factory.build(environment, config.getDataSourceFactory(), "postgresql");
 environment.jersey().register(new UserResource(jdbi));
}

This will create a new managed connection pool to the database, a
health check for connectivity to the database, and a new Jdbi
instance for you to use.

Your service’s configuration file will then look like this:

database:
 # the name of your JDBC driver
 driverClass: org.postgresql.Driver

 # the username
 user: pg-user

 # the password
 password: iAMs00perSecrEET

 # the JDBC URL
 url: jdbc:postgresql://db.example.com/db-prod

 # any properties specific to your JDBC driver:
 properties:
 charSet: UTF-8

 # the maximum amount of time to wait on an empty pool before throwing an exception
 maxWaitForConnection: 1s

 # the SQL query to run when validating a connection's liveness
 validationQuery: "/* MyService Health Check */ SELECT 1"

 # the timeout before a connection validation queries fail
 validationQueryTimeout: 3s

 # the minimum number of connections to keep open
 minSize: 8

 # the maximum number of connections to keep open
 maxSize: 32

 # whether or not idle connections should be validated
 checkConnectionWhileIdle: false

 # the amount of time to sleep between runs of the idle connection validation, abandoned cleaner and idle pool resizing
 evictionInterval: 10s

 # the minimum amount of time an connection must sit idle in the pool before it is eligible for eviction
 minIdleTime: 1 minute

Plugins

JDBI3 is built using plugins [http://jdbi.org/#_third_party_integration] to add features to its core implementation.
Dropwizard adds the sqlobject [http://jdbi.org/#_sql_objects], jodatime [http://jdbi.org/#_jodatime], and guava [http://jdbi.org/#_google_guava] plugins by default,
but you are free to add other existing plugins you might need or create your own.

Usage

We highly recommend you use JDBI’s SQL Objects API [http://jdbi.org/#_sql_objects], which allows you to write DAO classes as
interfaces:

public interface MyDAO {
 @SqlUpdate("create table something (id int primary key, name varchar(100))")
 void createSomethingTable();

 @SqlUpdate("insert into something (id, name) values (:id, :name)")
 void insert(@Bind("id") int id, @Bind("name") String name);

 @SqlQuery("select name from something where id = :id")
 String findNameById(@Bind("id") int id);
}

final MyDAO dao = database.onDemand(MyDAO.class);

This ensures your DAO classes are trivially mockable, as well as encouraging you to extract mapping
code (e.g., RowMapper -> domain objects) into testable, reusable classes.

Exception Handling

By adding the JdbiExceptionsBundle to your application, Dropwizard
will automatically unwrap any thrown SQLException or JdbiException instances.
This is critical for debugging, since otherwise only the common wrapper exception’s stack trace is
logged.

Prepended Comments

If you’re using JDBI’s SQL Objects API [http://jdbi.org/#_sql_objects] (and you should be), dropwizard-jdbi3 will
automatically prepend the SQL object’s class and method name to the SQL query as an SQL comment:

/* com.example.service.dao.UserDAO.findByName */
SELECT id, name, email
FROM users
WHERE name = 'Coda';

This will allow you to quickly determine the origin of any slow or misbehaving queries.

Dropwizard Migrations

The dropwizard-migrations module provides you with a wrapper for Liquibase [http://www.liquibase.org] database
refactoring.

Configuration

Like Dropwizard JDBI3, your configuration class needs a
DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 private DataSourceFactory database = new DataSourceFactory();

 @JsonProperty("database")
 public DataSourceFactory getDataSourceFactory() {
 return database;
 }
}

Adding The Bundle

Then, in your application’s initialize method, add a new MigrationsBundle subclass:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {
 bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
 @Override
 public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration) {
 return configuration.getDataSourceFactory();
 }
 });
}

Defining Migrations

Your database migrations are stored in your Dropwizard project, in
src/main/resources/migrations.xml. This file will be packaged with your application, allowing you to
run migrations using your application’s command-line interface. You can change the name of the migrations
file used by overriding the getMigrationsFileName() method in MigrationsBundle.

For example, to create a new people table, you might create an initial migrations.xml like
this:

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog
 xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
 http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.1.xsd">

 <changeSet id="1" author="codahale">
 <createTable tableName="people">
 <column name="id" type="bigint" autoIncrement="true">
 <constraints primaryKey="true" nullable="false"/>
 </column>
 <column name="fullName" type="varchar(255)">
 <constraints nullable="false"/>
 </column>
 <column name="jobTitle" type="varchar(255)"/>
 </createTable>
 </changeSet>
</databaseChangeLog>

For more information on available database refactorings, check the Liquibase [http://www.liquibase.org] documentation.

Checking Your Database’s State

To check the state of your database, use the db status command:

java -jar hello-world.jar db status helloworld.yml

Dumping Your Schema

If your database already has an existing schema and you’d like to pre-seed your migrations.xml
document, you can run the db dump command:

java -jar hello-world.jar db dump helloworld.yml

This will output a Liquibase [http://www.liquibase.org] change log with a changeset capable of recreating your database.

Tagging Your Schema

To tag your schema at a particular point in time (e.g., to make rolling back easier), use the
db tag command:

java -jar hello-world.jar db tag helloworld.yml 2012-10-08-pre-user-move

Migrating Your Schema

To apply pending changesets to your database schema, run the db migrate command:

java -jar hello-world.jar db migrate helloworld.yml

Warning

This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the --dry-run flag first. This will output the SQL to be run to stdout.

Note

To apply only a specific number of pending changesets, use the --count flag.

Rolling Back Your Schema

To roll back changesets which have already been applied, run the db rollback command. You will
need to specify either a tag, a date, or a number of changesets to roll back to:

java -jar hello-world.jar db rollback helloworld.yml --tag 2012-10-08-pre-user-move

Warning

This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the --dry-run flag first. This will output the SQL to be run to stdout.

Testing Migrations

To verify that a set of pending changesets can be fully rolled back, use the db test command,
which will migrate forward, roll back to the original state, then migrate forward again:

java -jar hello-world.jar db test helloworld.yml

Warning

Do not run this in production, for obvious reasons.

Preparing A Rollback Script

To prepare a rollback script for pending changesets before they have been applied, use the
db prepare-rollback command:

java -jar hello-world.jar db prepare-rollback helloworld.yml

This will output a DDL script to stdout capable of rolling back all unapplied changesets.

Generating Documentation

To generate HTML documentation on the current status of the database, use the db generate-docs
command:

java -jar hello-world.jar db generate-docs helloworld.yml ~/db-docs/

Dropping All Objects

To drop all objects in the database, use the db drop-all command:

java -jar hello-world.jar db drop-all --confirm-delete-everything helloworld.yml

Warning

You need to specify the --confirm-delete-everything flag because this command deletes
everything in the database. Be sure you want to do that first.

Fast-Forwarding Through A Changeset

To mark a pending changeset as applied (e.g., after having backfilled your migrations.xml with
db dump), use the db fast-forward command:

java -jar hello-world.jar db fast-forward helloworld.yml

This will mark the next pending changeset as applied. You can also use the --all flag to mark
all pending changesets as applied.

Support For Adding Multiple Migration Bundles

Assuming migrations need to be done for two different databases, you would need to have two different data source factories:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 private DataSourceFactory database1 = new DataSourceFactory();

 @Valid
 @NotNull
 private DataSourceFactory database2 = new DataSourceFactory();

 @JsonProperty("database1")
 public DataSourceFactory getDb1DataSourceFactory() {
 return database1;
 }

 @JsonProperty("database2")
 public DataSourceFactory getDb2DataSourceFactory() {
 return database2;
 }
}

Now multiple migration bundles can be added with unique names like so:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {
 bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
 @Override
 public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration) {
 return configuration.getDb1DataSourceFactory();
 }

 @Override
 public String name() {
 return "db1";
 }
 });

 bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
 @Override
 public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration) {
 return configuration.getDb2DataSourceFactory();
 }

 @Override
 public String name() {
 return "db2";
 }
 });
}

To migrate your schema:

java -jar hello-world.jar db1 migrate helloworld.yml

and

java -jar hello-world.jar db2 migrate helloworld.yml

Note

Whenever a name is added to a migration bundle, it becomes the command that needs to be run at the command line.
eg: To check the state of your database, use the status command:

java -jar hello-world.jar db1 status helloworld.yml

or

java -jar hello-world.jar db2 status helloworld.yml

By default the migration bundle uses the “db” command. By overriding you can customize it to provide any name you want
and have multiple migration bundles. Wherever the “db” command was being used, this custom name can be used.

There will also be a need to provide different change log migration files as well. This can be done as

java -jar hello-world.jar db1 migrate helloworld.yml --migrations <path_to_db1_migrations.xml>

java -jar hello-world.jar db2 migrate helloworld.yml --migrations <path_to_db2_migrations.xml>

More Information

If you are using databases supporting multiple schemas like PostgreSQL, Oracle, or H2, you can use the
optional --catalog and --schema arguments to specify the database catalog and schema used for the
Liquibase commands.

For more information on available commands, either use the db --help command, or for more
detailed help on a specific command, use db <cmd> --help.

Dropwizard Hibernate

The dropwizard-hibernate module provides you with managed access to Hibernate [http://www.hibernate.org/], a
powerful, industry-standard object-relation mapper (ORM).

Configuration

To create a managed, instrumented SessionFactory instance, your
configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 private DataSourceFactory database = new DataSourceFactory();

 @JsonProperty("database")
 public DataSourceFactory getDataSourceFactory() {
 return database;
 }
}

Then, add a HibernateBundle instance to your application class, specifying your entity classes
and how to get a DataSourceFactory from your configuration subclass:

private final HibernateBundle<ExampleConfiguration> hibernate = new HibernateBundle<ExampleConfiguration>(Person.class) {
 @Override
 public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration) {
 return configuration.getDataSourceFactory();
 }
};

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {
 bootstrap.addBundle(hibernate);
}

@Override
public void run(ExampleConfiguration config, Environment environment) {
 final PersonDAO dao = new PersonDAO(hibernate.getSessionFactory());
 environment.jersey().register(new UserResource(dao));
}

This will create a new managed connection pool to the database, a
health check for connectivity to the database, and a new
SessionFactory instance for you to use in your DAO classes.

Your application’s configuration file will then look like this:

database:
 # the name of your JDBC driver
 driverClass: org.postgresql.Driver

 # the username
 user: pg-user

 # the password
 password: iAMs00perSecrEET

 # the JDBC URL
 url: jdbc:postgresql://db.example.com/db-prod

 # any properties specific to your JDBC driver:
 properties:
 charSet: UTF-8
 hibernate.dialect: org.hibernate.dialect.PostgreSQLDialect

 # the maximum amount of time to wait on an empty pool before throwing an exception
 maxWaitForConnection: 1s

 # the SQL query to run when validating a connection's liveness
 validationQuery: "/* MyApplication Health Check */ SELECT 1"

 # the minimum number of connections to keep open
 minSize: 8

 # the maximum number of connections to keep open
 maxSize: 32

 # whether or not idle connections should be validated
 checkConnectionWhileIdle: false

Usage

Data Access Objects

Dropwizard comes with AbstractDAO, a minimal template for entity-specific DAO classes. It
contains type-safe wrappers for most of SessionFactory’s common operations:

public class PersonDAO extends AbstractDAO<Person> {
 public PersonDAO(SessionFactory factory) {
 super(factory);
 }

 public Person findById(Long id) {
 return get(id);
 }

 public long create(Person person) {
 return persist(person).getId();
 }

 public List<Person> findAll() {
 return list(namedQuery("com.example.helloworld.core.Person.findAll"));
 }
}

Transactional Resource Methods

Dropwizard uses a declarative method of scoping transactional boundaries. Not all resource methods
actually require database access, so the @UnitOfWork annotation is provided:

@GET
@Path("/{id}")
@Timed
@UnitOfWork
public Person findPerson(@PathParam("id") LongParam id) {
 return dao.findById(id.get());
}

This will automatically open a session, begin a transaction, call findById, commit the
transaction, and finally close the session. If an exception is thrown, the transaction is rolled
back.

Important

The Hibernate session is closed before your resource method’s return value (e.g.,
the Person from the database), which means your resource method (or DAO) is
responsible for initializing all lazily-loaded collections, etc., before returning.
Otherwise, you’ll get a LazyInitializationException thrown in your template (or
null values produced by Jackson).

Transactional Resource Methods Outside Jersey Resources

Currently creating transactions with the @UnitOfWork annotation works out-of-box only for resources
managed by Jersey. If you want to use it outside Jersey resources, e.g. in authenticators, you should
instantiate your class with UnitOfWorkAwareProxyFactory.

SessionDao dao = new SessionDao(hibernateBundle.getSessionFactory());
ExampleAuthenticator exampleAuthenticator = new UnitOfWorkAwareProxyFactory(hibernateBundle)
 .create(ExampleAuthenticator.class, SessionDao.class, dao);

It will create a proxy of your class, which will open a Hibernate session with a transaction around
methods with the @UnitOfWork annotation.

Prepended Comments

Dropwizard automatically configures Hibernate to prepend a comment describing the context of all
queries:

/* load com.example.helloworld.core.Person */
select
 person0_.id as id0_0_,
 person0_.fullName as fullName0_0_,
 person0_.jobTitle as jobTitle0_0_
from people person0_
where person0_.id=?

This will allow you to quickly determine the origin of any slow or misbehaving queries.

Dropwizard Authentication

The dropwizard-auth client provides authentication using either HTTP Basic
Authentication or OAuth2 bearer tokens.

Authenticators

An authenticator is a strategy class which, given a set of client-provided credentials, possibly
returns a principal (i.e., the person or entity on behalf of whom your service will do something).

Authenticators implement the Authenticator<C, P extends Principal> interface, which has a single method:

public class ExampleAuthenticator implements Authenticator<BasicCredentials, User> {
 @Override
 public Optional<User> authenticate(BasicCredentials credentials) throws AuthenticationException {
 if ("secret".equals(credentials.getPassword())) {
 return Optional.of(new User(credentials.getUsername()));
 }
 return Optional.empty();
 }
}

This authenticator takes basic auth credentials and if the client-provided
password is secret, authenticates the client as a User with the client-provided username.

If the password doesn’t match, an absent Optional is returned instead, indicating that the
credentials are invalid.

Warning

It’s important for authentication services not to provide too much information in their
errors. The fact that a username or email has an account may be meaningful to an
attacker, so the Authenticator interface doesn’t allow you to distinguish between
a bad username and a bad password. You should only throw an AuthenticationException
if the authenticator is unable to check the credentials (e.g., your database is
down).

Caching

Because the backing data stores for authenticators may not handle high throughput (an RDBMS or LDAP
server, for example), Dropwizard provides a decorator class which provides caching:

SimpleAuthenticator simpleAuthenticator = new SimpleAuthenticator();
CachingAuthenticator<BasicCredentials, User> cachingAuthenticator = new CachingAuthenticator<>(
 metricRegistry, simpleAuthenticator,
 config.getAuthenticationCachePolicy());

Dropwizard can parse Guava’s CacheBuilderSpec from the configuration policy, allowing your
configuration file to look like this:

authenticationCachePolicy: maximumSize=10000, expireAfterAccess=10m

This caches up to 10,000 principals with an LRU policy, evicting stale entries after 10 minutes.

Authorizer

An authorizer is a strategy class which, given a principal and a role, decides if access is granted to the
principal.

The authorizer implements the Authorizer<P extends Principal> interface, which has a single method:

public class ExampleAuthorizer implements Authorizer<User> {
 @Override
 public boolean authorize(User user, String role) {
 return user.getName().equals("good-guy") && role.equals("ADMIN");
 }
}

Basic Authentication

The AuthDynamicFeature with the BasicCredentialAuthFilter and RolesAllowedDynamicFeature
enables HTTP Basic authentication and authorization; requires an authenticator which
takes instances of BasicCredentials. If you don’t use authorization, then RolesAllowedDynamicFeature
is not required.

@Override
public void run(ExampleConfiguration configuration,
 Environment environment) {
 environment.jersey().register(new AuthDynamicFeature(
 new BasicCredentialAuthFilter.Builder<User>()
 .setAuthenticator(new ExampleAuthenticator())
 .setAuthorizer(new ExampleAuthorizer())
 .setRealm("SUPER SECRET STUFF")
 .buildAuthFilter()));
 environment.jersey().register(RolesAllowedDynamicFeature.class);
 //If you want to use @Auth to inject a custom Principal type into your resource
 environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));
}

OAuth2

The AuthDynamicFeature with OAuthCredentialAuthFilter and RolesAllowedDynamicFeature
enables OAuth2 bearer-token authentication and authorization; requires an authenticator which
takes instances of String. If you don’t use authorization, then RolesAllowedDynamicFeature
is not required.

@Override
public void run(ExampleConfiguration configuration,
 Environment environment) {
 environment.jersey().register(new AuthDynamicFeature(
 new OAuthCredentialAuthFilter.Builder<User>()
 .setAuthenticator(new ExampleOAuthAuthenticator())
 .setAuthorizer(new ExampleAuthorizer())
 .setPrefix("Bearer")
 .buildAuthFilter()));
 environment.jersey().register(RolesAllowedDynamicFeature.class);
 //If you want to use @Auth to inject a custom Principal type into your resource
 environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));
}

Chained Factories

The ChainedAuthFilter enables usage of various authentication factories at the same time.

@Override
public void run(ExampleConfiguration configuration,
 Environment environment) {
 AuthFilter basicCredentialAuthFilter = new BasicCredentialAuthFilter.Builder<>()
 .setAuthenticator(new ExampleBasicAuthenticator())
 .setAuthorizer(new ExampleAuthorizer())
 .setPrefix("Basic")
 .buildAuthFilter();

 AuthFilter oauthCredentialAuthFilter = new OAuthCredentialAuthFilter.Builder<>()
 .setAuthenticator(new ExampleOAuthAuthenticator())
 .setAuthorizer(new ExampleAuthorizer())
 .setPrefix("Bearer")
 .buildAuthFilter();

 List<AuthFilter> filters = Lists.newArrayList(basicCredentialAuthFilter, oauthCredentialAuthFilter);
 environment.jersey().register(new AuthDynamicFeature(new ChainedAuthFilter(filters)));
 environment.jersey().register(RolesAllowedDynamicFeature.class);
 //If you want to use @Auth to inject a custom Principal type into your resource
 environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));
}

For this to work properly, all chained factories must produce the same type of principal, here User.

Protecting Resources

There are two ways to protect a resource. You can mark your resource method with one of the following annotations:

	@PermitAll. All authenticated users will have access to the method.

	@RolesAllowed. Access will be granted to the users with the specified roles.

	@DenyAll. No access will be granted to anyone.

Note

You can use @RolesAllowed, @PermitAll on the class level. Method annotations take precedence over the class ones.

Alternatively, you can annotate the parameter representing your principal with @Auth. Note you must register a
jersey provider to make this work.

environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));

@RolesAllowed("ADMIN")
@GET
public SecretPlan getSecretPlan(@Auth User user) {
 return dao.findPlanForUser(user);
}

You can also access the Principal by adding a parameter to your method @Context SecurityContext context. Note this
will not automatically register the servlet filter which performs authentication. You will still need to add one of
@PermitAll, @RolesAllowed, or @DenyAll. This is not the case with @Auth. When that is present, the auth
filter is automatically registered to facilitate users upgrading from older versions of Dropwizard

@RolesAllowed("ADMIN")
@GET
public SecretPlan getSecretPlan(@Context SecurityContext context) {
 User userPrincipal = (User) context.getUserPrincipal();
 return dao.findPlanForUser(user);
}

If there are no provided credentials for the request, or if the credentials are invalid, the
provider will return a scheme-appropriate 401 Unauthorized response without calling your
resource method.

Optional protection

Resource methods can be _optionally_ protected by representing the
principal as an Optional. In such cases, the Optional resource
method argument will be populated with the principal, if
present. Otherwise, the argument will be Optional.empty.

For instance, say you have an endpoint that should display a logged-in
user’s name, but return an anonymous reply for unauthenticated
requests. You need to implement a custom filter which injects a
security context containing the principal if it exists, without
performing authentication.

@GET
public String getGreeting(@Auth Optional<User> userOpt) {
 if (userOpt.isPresent()) {
 return "Hello, " + userOpt.get().getName() + "!";
 } else {
 return "Greetings, anonymous visitor!"
 }
}

For optionally-protected resources, requests with invalid auth will be
treated the same as those with no provided auth credentials. That is
to say, requests that _fail_ to meet an authenticator or authorizer’s
requirements result in an empty principal being passed to the resource
method.

Testing Protected Resources

Add this dependency into your pom.xml file:

<dependencies>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-testing</artifactId>
 <version>${dropwizard.version}</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish.jersey.test-framework.providers</groupId>
 <artifactId>jersey-test-framework-provider-grizzly2</artifactId>
 <version>${jersey.version}</version>
 <exclusions>
 <exclusion>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 </exclusion>
 <exclusion>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
</dependencies>

When you build your ResourceTestRule, add the GrizzlyWebTestContainerFactory line.

@Rule
public ResourceTestRule rule = ResourceTestRule
 .builder()
 .setTestContainerFactory(new GrizzlyWebTestContainerFactory())
 .addProvider(new AuthDynamicFeature(new OAuthCredentialAuthFilter.Builder<User>()
 .setAuthenticator(new MyOAuthAuthenticator())
 .setAuthorizer(new MyAuthorizer())
 .setRealm("SUPER SECRET STUFF")
 .setPrefix("Bearer")
 .buildAuthFilter()))
 .addProvider(RolesAllowedDynamicFeature.class)
 .addProvider(new AuthValueFactoryProvider.Binder<>(User.class))
 .addResource(new ProtectedResource())
 .build();

In this example, we are testing the oauth authentication, so we need to set the header manually.

@Test
public void testProtected() throws Exception {
 final Response response = rule.target("/protected")
 .request(MediaType.APPLICATION_JSON_TYPE)
 .header("Authorization", "Bearer TOKEN")
 .get();

 assertThat(response.getStatus()).isEqualTo(200);
}

Multiple Principals and Authenticators

In some cases you may want to use different authenticators/authentication schemes for different
resources. For example you may want Basic authentication for one resource and OAuth
for another resource, at the same time using a different Principal for each
authentication scheme.

For this use case, there is the PolymorphicAuthDynamicFeature and the
PolymorphicAuthValueFactoryProvider. With these two components, we can use different
combinations of authentication schemes/authenticators/authorizers/principals. To use this
feature, we need to do a few things:

	Register the PolymorphicAuthDynamicFeature with a map that maps principal types to
authentication filters.

	Register the PolymorphicAuthValueFactoryProvider with a set of principal classes
that you will be using.

	Annotate your resource method Principal parameters with @Auth.

As an example, the following code configures both OAuth and Basic authentication, using
a different principal for each.

final AuthFilter<BasicCredentials, BasicPrincipal> basicFilter
 = new BasicCredentialAuthFilter.Builder<BasicPrincipal>()
 .setAuthenticator(new ExampleAuthenticator())
 .setRealm("SUPER SECRET STUFF")
 .buildAuthFilter());
final AuthFilter<String, OAuthPrincipal> oauthFilter
 = new OAuthCredentialAuthFilter.Builder<OAuthPrincipal>()
 .setAuthenticator(new ExampleOAuthAuthenticator())
 .setPrefix("Bearer")
 .buildAuthFilter());

final PolymorphicAuthDynamicFeature feature = new PolymorphicAuthDynamicFeature<>(
 ImmutableMap.of(
 BasicPrincipal.class, basicFilter,
 OAuthPrincipal.class, oauthFilter));
final AbstractBinder binder = new PolymorphicAuthValueFactoryProvider.Binder<>(
 ImmutableSet.of(BasicPrincipal.class, OAuthPrincipal.class));

environment.jersey().register(feature);
environment.jersey().register(binder);

Now we are able to do something like the following

@GET
public Response basicAuthResource(@Auth BasicPrincipal principal) {}

@GET
public Response oauthResource(@Auth OAuthPrincipal principal) {}

The first resource method will use Basic authentication while the second one will use OAuth.

Note that with the above example, only authentication is configured. If you also want
authorization, the following steps will need to be taken.

	Register the RolesAllowedDynamicFeature with the application.

	Make sure you add Authorizers when you build your AuthFilters.

	Make sure any custom AuthFilter you add has the @Priority(Priorities.AUTHENTICATION) annotation set
(otherwise authorization will be tested before the request’s security context is properly set and will fail).

	Annotate the resource method with the authorization annotation. Unlike the note earlier in
this document that says authorization annotations are allowed on classes, with this
poly feature, currently that is not supported. The annotation MUST go on the resource method

So continuing with the previous example you should add the following configurations

... = new BasicCredentialAuthFilter.Builder<BasicPrincipal>()
 .setAuthorizer(new ExampleAuthorizer()).. // set authorizer

... = new OAuthCredentialAuthFilter.Builder<OAuthPrincipal>()
 .setAuthorizer(new ExampleAuthorizer()).. // set authorizer

environment.jersey().register(RolesAllowedDynamicFeature.class);

Now we can do

@GET
@RolesAllowed({ "ADMIN" })
public Response baseAuthResource(@Auth BasicPrincipal principal) {}

@GET
@RolesAllowed({ "ADMIN" })
public Response oauthResource(@Auth OAuthPrincipal principal) {}

Note

The polymorphic auth feature SHOULD NOT be used with any other AuthDynamicFeature. Doing so may have undesired effects.

Dropwizard Forms

The dropwizard-forms module provides you with a support for multi-part forms
via Jersey [https://jersey.github.io/].

Adding The Bundle

Then, in your application’s initialize method, add a new MultiPartBundle subclass:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {
 bootstrap.addBundle(new MultiPartBundle());
}

Testing

To test resources that utilize multi-part form features, one must add MultiPartFeature.class to
the ResourceTestRule as a provider, and register it on the client like the following:

public class MultiPartTest {
 @ClassRule
 public static final ResourceTestRule resource = ResourceTestRule.builder()
 .addProvider(MultiPartFeature.class)
 .addResource(new TestResource())
 .build();

 @Test
 public void testClientMultipart() {
 final FormDataMultiPart multiPart = new FormDataMultiPart()
 .field("test-data", "Hello Multipart");
 final String response = resource.target("/test")
 .register(MultiPartFeature.class)
 .request()
 .post(Entity.entity(multiPart, multiPart.getMediaType()), String.class);
 assertThat(response).isEqualTo("Hello Multipart");
 }

 @Path("test")
 public static class TestResource {
 @POST
 @Consumes(MediaType.MULTIPART_FORM_DATA)
 public String post(@FormDataParam("test-data") String testData) {
 return testData;
 }
 }
}

More Information

For additional and more detailed documentation about the Jersey multi-part support, please refer to the
documentation in the Jersey User Guide [https://jersey.github.io/documentation/latest/media.html#multipart] and Javadoc [https://jersey.github.io/apidocs/latest/jersey/org/glassfish/jersey/media/multipart/package-summary.html].

Dropwizard Validation

Dropwizard comes with a host of validation tools out of the box to allow endpoints to return meaningful error messages when constraints are violated. Hibernate Validator [http://hibernate.org/validator/] is packaged with Dropwizard, so what can be done in Hibernate Validator, can be done with Dropwizard.

Validations

Almost anything can be validated on resource endpoints. To give a quick example, the following
endpoint doesn’t allow a null or empty name query parameter.

@GET
public String find(@QueryParam("name") @NotEmpty String arg) {
 // ...
}

If a client sends an empty or nonexistent name query param, Dropwizard will respond with a 400 Bad Request
code with the error: query param name may not be empty.

Additionally, annotations such as HeaderParam, CookieParam, FormParam, etc, can be
constrained with violations giving descriptive errors and 400 status codes.

Constraining Entities

If we’re accepting client-provided Person, we probably want to ensure that the name field of
the object isn’t null or blank in the request. We can do this as follows:

public class Person {

 @NotEmpty // ensure that name isn't null or blank
 private final String name;

 @JsonCreator
 public Person(@JsonProperty("name") String name) {
 this.name = name;
 }

 @JsonProperty("name")
 public String getName() {
 return name;
 }
}

Then, in our resource class, we can add the @Valid annotation to the Person annotation:

@PUT
public Person replace(@NotNull @Valid Person person) {
 // ...
}

If the name field is missing, Dropwizard will return a 422 Unprocessable Entity response
detailing the validation errors: name may not be empty

Note

You don’t need @Valid when the type you are validating can be validated directly (int,
String, Integer). If a class has fields that need validating, then instances of the
class must be marked @Valid. For more information, see the Hibernate Validator documentation
on Object graphs [https://docs.jboss.org/hibernate/validator/5.4/reference/en-US/html_single/#section-object-graph-validation] and Cascaded validation [https://docs.jboss.org/hibernate/validator/5.4/reference/en-US/html_single/#example-cascaded-validation].

Since our entity is also annotated with @NotNull, Dropwizard will also guard against null
input with a response stating that the body must not be null.

Optional<T> Constraints

If an entity, field, or parameter is not required, it can be wrapped in an Optional<T>, but the
inner value can still be constrained with the @UnwrapValidatedValue annotation. If the
Optional is absent, then the constraints are not applied.

Note

Be careful when using constraints with *Param annotations on Optional<String> parameters
as there is a subtle, but important distinction between null and empty. If a client requests
bar?q=, q will evaluate to Optional.of(""). If you want q to evaluate to
Optional.absent() in this situation, change the type to NonEmptyStringParam

Note

Param types such as IntParam and NonEmptyStringParam can also be constrained.

There is a caveat regarding @UnwrapValidatedValue and *Param types, as there still are some
cumbersome situations when constraints need to be applied to the container and the value.

@POST
// The @NotNull is supposed to mean that the parameter is required but the Max(3) is supposed to
// apply to the contained integer. Currently, this code will fail saying that Max can't
// be applied on an IntParam
public List<Person> createNum(@QueryParam("num") @UnwrapValidatedValue(false)
 @NotNull @Max(3) IntParam num) {
 // ...
}

@GET
// Similarly, the underlying validation framework can't unwrap nested types (an integer wrapped
// in an IntParam wrapped in an Optional), regardless if the @UnwrapValidatedValue is used
public Person retrieve(@QueryParam("num") @Max(3) Optional<IntParam> num) {
 // ...
}

To work around these limitations, if the parameter is required check for it in the endpoint and
throw an exception, else use @DefaultValue or move the Optional into the endpoint.

@POST
// Workaround to handle required int params and validations
public List<Person> createNum(@QueryParam("num") @Max(3) IntParam num) {
 if (num == null) {
 throw new WebApplicationException("query param num must not be null", 400);
 }
 // ...
}

@GET
// Workaround to handle optional int params and validations with DefaultValue
public Person retrieve(@QueryParam("num") @DefaultValue("0") @Max(3) IntParam num) {
 // ...
}

@GET
// Workaround to handle optional int params and validations with Optional
public Person retrieve2(@QueryParam("num") @Max(3) IntParam num) {
 Optional.fromNullable(num);
 // ...
}

Enum Constraints

Given the following enum:

public enum Choice {
 OptionA,
 OptionB,
 OptionC
}

And the endpoint:

@GET
public String getEnum(@NotNull @QueryParam("choice") Choice choice) {
 return choice.toString();
}

One can expect Dropwizard not only to ensure that the query parameter exists, but to also provide
the client a list of valid options query param choice must be one of [OptionA, OptionB, OptionC]
when an invalid parameter is provided. The enum that the query parameter is deserialized into is
first attempted on the enum’s name() field and then toString(). During the case insensitive
comparisons, the query parameter has whitespace removed with dashes and dots normalized to
underscores. This logic is also used when deserializing request body’s that contain enums.

Return Value Validations

It’s reasonable to want to make guarantees to clients regarding the server response. For example,
you may want to assert that no response will ever be null, and if an endpoint creates a
Person that the person is valid.

@POST
@NotNull
@Valid
public Person create() {
 return new Person(null);
}

In this instance, instead of returning someone with a null name, Dropwizard will return an HTTP
500 Internal Server Error with the error server response name may not be empty, so the client
knows the server failed through no fault of their own.

Analogous to an empty request body, an empty entity annotated with @NotNull will return server
response may not be null

Warning

Be careful when using return value constraints when endpoints satisfy all of the following:

	Function name starts with get

	No arguments

	The return value has validation constraints

If an endpoint satisfies these conditions, whenever a request is processed by the resource that
endpoint will be additionally invoked. To give a concrete example:

@Path("/")
public class ValidatedResource {
 private AtomicLong counter = new AtomicLong();

 @GET
 @Path("/foo")
 @NotEmpty
 public String getFoo() {
 counter.getAndIncrement();
 return "";
 }

 @GET
 @Path("/bar")
 public String getBar() {
 return "";
 }
}

If a /foo is requested then counter will have increment by 2, and if /bar is
requested then counter will increment by 1. It is our hope that such endpoints are few, far
between, and documented thoroughly.

Limitations

Jersey allows for BeanParam to have setters with *Param annotations. While nice for simple
transformations it does obstruct validation, so clients won’t receive as instructive of error
messages. The following example shows the behavior:

@Path("/root")
@Produces(MediaType.APPLICATION_JSON)
public class Resource {

 @GET
 @Path("params")
 public String getBean(@Valid @BeanParam MyBeanParams params) {
 return params.getField();
 }

 public static class MyBeanParams {
 @NotEmpty
 private String field;

 public String getField() {
 return field;
 }

 @QueryParam("foo")
 public void setField(String field) {
 this.field = Strings.nullToEmpty(field).trim();
 }
 }
}

A client submitting the query parameter foo as blank will receive the following error message:

{"errors":["getBean.arg0.field may not be empty"]}

Workarounds include:

	Name BeanParam fields the same as the *Param annotation values

	Supply validation message on annotation: @NotEmpty(message = "query param foo must not be empty")

	Perform transformations and validations on *Param inside endpoint

The same kind of limitation applies for Configuration objects:

public class MyConfiguration extends Configuration {
 @NotNull
 @JsonProperty("foo")
 private String baz;
}

Even though the property’s name is foo, the error when property is null will be:

* baz may not be null

Annotations

In addition to the annotations defined in Hibernate Validator [https://docs.jboss.org/hibernate/validator/5.4/reference/en-US/html_single/#section-builtin-constraints], Dropwizard contains another set of annotations,
which are briefly shown below.

public class Person {
 @NotEmpty
 private final String name;

 @NotEmpty
 @OneOf(value = {"m", "f"}, ignoreCase = true, ignoreWhitespace = true)
 // @OneOf forces a value to value within certain values.
 private final String gender;

 @Max(10)
 @Min(0)
 // The integer contained, if present, can attain a min value of 0 and a max of 10.
 private final Optional<Integer> animals;

 @JsonCreator
 public Person(@JsonProperty("name") String name) {
 this.name = name;
 }

 @JsonProperty("name")
 public String getName() {
 return name;
 }

 // Method that must return true for the object to be valid
 @ValidationMethod(message="name may not be Coda")
 @JsonIgnore
 public boolean isNotCoda() {
 return !"Coda".equals(name);
 }
}

The reason why Dropwizard defines @ValidationMethod is that more complex validations (for
example, cross-field comparisons) are often hard to do using declarative annotations. Adding
@ValidationMethod to any boolean-returning method which begins with is is a short and
simple workaround:

Note

Due to the rather daft JavaBeans conventions, when using @ValidationMethod, the method must
begin with is (e.g., #isValidPortRange(). This is a limitation of Hibernate Validator,
not Dropwizard.

Validating Grouped Constraints with @Validated

The @Validated annotation allows for validation groups [https://docs.jboss.org/hibernate/validator/5.4/reference/en-US/html_single/#chapter-groups] to be specifically set, instead of the
default group. This is useful when different endpoints share the same entity but may have different
validation requirements.

Going back to our favorite Person class. Let’s say in the initial version of our API, name
has to be non-empty, but realized that business requirements changed and a name can’t be longer than
5 letters. Instead of switching out the API from unsuspecting clients, we can accept both versions
of the API but at different endpoints.

// We're going to create a group of validations for each version of our API
public interface Version1Checks { }

// Our second version will extend Hibernate Validator Default class so that any validation
// annotation without an explicit group will also be validated with this version
public interface Version2Checks extends Default { }

public class Person {
 @NotEmpty(groups = Version1Checks.class)
 @Length(max = 5, groups = Version2Checks.class)
 private String name;

 @JsonCreator
 public Person(@JsonProperty("name") String name) {
 this.name = name;
 }

 @JsonProperty
 public String getName() {
 return name;
 }
}

@Path("/person")
@Produces(MediaType.APPLICATION_JSON)
public class PersonResource {

 // For the v1 endpoint, we'll validate with the version1 class, so we'll need to change the
 // group of the NotNull annotation from the default of Default.class to Version1Checks.class
 @POST
 @Path("/v1")
 public void createPersonV1(
 @NotNull(groups = Version1Checks.class)
 @Valid
 @Validated(Version1Checks.class)
 Person person
) {
 // implementation ...
 }

 // For the v2 endpoint, we'll validate with version1 and version2, which implicitly
 // adds in the Default.class.
 @POST
 @Path("/v2")
 public void createPersonV2(
 @NotNull
 @Valid
 @Validated({Version1Checks.class, Version2Checks.class})
 Person person
) {
 // implementation ...
 }
}

Now when clients hit /person/v1 the Person entity will be checked by all the constraints
that are a part of the Version1Checks group. If /person/v2 is hit, then all validations
are performed.

Warning

If the Version1Checks group wasn’t set for the @NotNull annotation for the v1 endpoint, the
annotation would not have had any effect and a null pointer exception would have occurred when a
property of a person is accessed. Dropwizard tries to protect against this class of bug by
disallowing multiple @Validated annotations on an endpoint that contain different groups.

Testing

It is critical to test the constraints so that you can ensure the assumptions about the data hold
and see what kinds of error messages clients will receive for bad input. The recommended way for
testing annotations is through Testing Resources, as Dropwizard does
a bit of magic behind the scenes when a constraint violation occurs to set the response’s status
code and ensure that the error messages are user friendly.

@Test
public void personNeedsAName() {
 // Tests what happens when a person with a null name is sent to
 // the endpoint.
 final Response post = resources.target("/person/v1").request()
 .post(Entity.json(new Person(null)));

 // Clients will receive a 422 on bad request entity
 assertThat(post.getStatus()).isEqualTo(422);

 // Check to make sure that errors are correct and human readable
 ValidationErrorMessage msg = post.readEntity(ValidationErrorMessage.class);
 assertThat(msg.getErrors())
 .containsOnly("name may not be empty");
}

Extending

While Dropwizard provides good defaults for validation error messages, one can customize the
response through an ExceptionMapper<JerseyViolationException>:

/** Return a generic response depending on if it is a client or server error */
public class MyJerseyViolationExceptionMapper implements ExceptionMapper<JerseyViolationException> {
 @Override
 public Response toResponse(final JerseyViolationException exception) {
 final Set<ConstraintViolation<?>> violations = exception.getConstraintViolations();
 final Invocable invocable = exception.getInvocable();
 final int status = ConstraintMessage.determineStatus(violations, invocable);
 return Response.status(status)
 .type(MediaType.TEXT_PLAIN_TYPE)
 .entity(status >= 500 ? "Server error" : "Client error")
 .build();
 }
}

To register MyJerseyViolationExceptionMapper and have it override the default:

@Override
public void run(final MyConfiguration conf, final Environment env) {
 env.jersey().register(new MyJerseyViolationExceptionMapper());
 env.jersey().register(new Resource());
}

Dropwizard calculates the validation error message through ConstraintMessage.getMessage.

If you need to validate entities outside of resource endpoints, the validator can be accessed in the
Environment when the application is first ran.

Validator validator = environment.getValidator();
Set<ConstraintViolation> errors = validator.validate(/* instance of class */)

Dropwizard Views

The dropwizard-views-mustache & dropwizard-views-freemarker modules provide you with simple, fast HTML views using either FreeMarker [http://FreeMarker.sourceforge.net/] or Mustache [http://mustache.github.com/mustache.5.html].

To enable views for your Application, add the ViewBundle in the initialize method of your Application class:

public void initialize(Bootstrap<MyConfiguration> bootstrap) {
 bootstrap.addBundle(new ViewBundle<MyConfiguration>());
}

You can pass configuration through to view renderers by overriding getViewConfiguration:

public void initialize(Bootstrap<MyConfiguration> bootstrap) {
 bootstrap.addBundle(new ViewBundle<MyConfiguration>() {
 @Override
 public Map<String, Map<String, String>> getViewConfiguration(MyConfiguration config) {
 return config.getViewRendererConfiguration();
 }
 });
}

The returned map should have, for each renderer (such as freemarker or mustache), a Map<String, String> describing how to configure the renderer. Specific keys and their meanings can be found in the FreeMarker and Mustache documentation:

views:
 freemarker:
 strict_syntax: true
 mustache:
 cache: false

Then, in your resource method, add a View class:

public class PersonView extends View {
 private final Person person;

 public PersonView(Person person) {
 super("person.ftl");
 this.person = person;
 }

 public Person getPerson() {
 return person;
 }
}

person.ftl is the path of the template relative to the class name. If this class was
com.example.service.PersonView, Dropwizard would then look for the file
src/main/resources/com/example/service/person.ftl.

If your template path contains .ftl, .flth, or .ftlx, it’ll be interpreted as a FreeMarker [http://FreeMarker.sourceforge.net/] template. If it contains
.mustache, it’ll be interpreted as a Mustache template.

Tip

Dropwizard Freemarker [http://FreeMarker.sourceforge.net/] Views also support localized template files. It picks up the client’s locale
from their Accept-Language, so you can add a French template in person_fr.ftl or a Canadian
template in person_en_CA.ftl.

Your template file might look something like this:

<#-- @ftlvariable name="" type="com.example.views.PersonView" -->
<html>
 <body>
 <!-- calls getPerson().getName() and sanitizes it -->
 <h1>Hello, ${person.name?html}!</h1>
 </body>
</html>

The @ftlvariable lets FreeMarker (and any FreeMarker IDE plugins you may be using) know that the
root object is a com.example.views.PersonView instance. If you attempt to call a property which
doesn’t exist on PersonView – getConnectionPool(), for example – it will flag that line in
your IDE.

Once you have your view and template, you can simply return an instance of your View subclass:

@Path("/people/{id}")
@Produces(MediaType.TEXT_HTML)
public class PersonResource {
 private final PersonDAO dao;

 public PersonResource(PersonDAO dao) {
 this.dao = dao;
 }

 @GET
 public PersonView getPerson(@PathParam("id") String id) {
 return new PersonView(dao.find(id));
 }
}

Tip

Jackson can also serialize your views, allowing you to serve both text/html and
application/json with a single representation class.

For more information on how to use FreeMarker, see the FreeMarker [http://FreeMarker.sourceforge.net/] documentation.

For more information on how to use Mustache, see the Mustache [http://mustache.github.com/mustache.5.html] and Mustache.java [https://github.com/spullara/mustache.java] documentation.

Template Errors

By default, if there is an error with the template (eg. the template file is not found or there is a
compilation error with the template), the user will receive a 500 Internal Server Error with a
generic HTML message. The exact error will logged under error mode.

To customize the behavior, create an exception mapper that will override the default one by looking
for ViewRenderException:

env.jersey().register(new ExtendedExceptionMapper<WebApplicationException>() {
 @Override
 public Response toResponse(WebApplicationException exception) {
 // Return a response here
 }

 @Override
 public boolean isMappable(WebApplicationException e) {
 return ExceptionUtils.indexOfThrowable(e, ViewRenderException.class) != -1;
 }
});

As an example, to return a 404 instead of a internal server error when one’s
mustache templates can’t be found:

env.jersey().register(new ExtendedExceptionMapper<WebApplicationException>() {
 @Override
 public Response toResponse(WebApplicationException exception) {
 return Response.status(Response.Status.NOT_FOUND).build();
 }

 @Override
 public boolean isMappable(WebApplicationException e) {
 return Throwables.getRootCause(e).getClass() == MustacheNotFoundException.class;
 }
});

Caching

By default templates are cached to improve loading time. If you want to disable it during the development mode,
set the cache property to false in the view configuration.

views:
 .mustache:
 cache: false

Custom Error Pages

To get HTML error pages that fit in with your application, you can use a custom error view. Create a View that
takes an ErrorMessage parameter in its constructor, and hook it up by registering a instance of
ErrorEntityWriter.

env.jersey().register(new ErrorEntityWriter<ErrorMessage,View>(MediaType.TEXT_HTML_TYPE, View.class) {
 @Override
 protected View getRepresentation(ErrorMessage errorMessage) {
 return new ErrorView(errorMessage);
 }
});

For validation error messages, you’ll need to register another ErrorEntityWriter that handles
ValidationErrorMessage objects.

env.jersey().register(new ErrorEntityWriter<ValidationErrorMessage,View>(MediaType.TEXT_HTML_TYPE, View.class) {
 @Override
 protected View getRepresentation(ValidationErrorMessage message) {
 return new ValidationErrorView(message);
 }
});

Dropwizard & Scala

The dropwizard-scala module is now maintained and documented elsewhere [https://github.com/datasift/dropwizard-scala].

The metrics-scala module is maintained here [https://github.com/erikvanoosten/metrics-scala].

Testing Dropwizard

The dropwizard-testing module provides you with some handy classes for testing
your representation classes
and resource classes. It also provides a JUnit rule
for full-stack testing of your entire app.

Testing Representations

While Jackson’s JSON support is powerful and fairly easy-to-use, you shouldn’t just rely on
eyeballing your representation classes to ensure you’re producing the API you think you
are. By using the helper methods in FixtureHelpers, you can add unit tests for serializing and
deserializing your representation classes to and from JSON.

Let’s assume we have a Person class which your API uses as both a request entity (e.g., when
writing via a PUT request) and a response entity (e.g., when reading via a GET request):

public class Person {
 private String name;
 private String email;

 private Person() {
 // Jackson deserialization
 }

 public Person(String name, String email) {
 this.name = name;
 this.email = email;
 }

 @JsonProperty
 public String getName() {
 return name;
 }

 @JsonProperty
 public void setName(String name) {
 this.name = name;
 }

 @JsonProperty
 public String getEmail() {
 return email;
 }

 @JsonProperty
 public void setEmail(String email) {
 this.email = email;
 }

 // hashCode
 // equals
 // toString etc.
}

Fixtures

First, write out the exact JSON representation of a Person in the
src/test/resources/fixtures directory of your Dropwizard project as person.json:

{
 "name": "Luther Blissett",
 "email": "lb@example.com"
}

Testing Serialization

Next, write a test for serializing a Person instance to JSON:

import static io.dropwizard.testing.FixtureHelpers.*;
import static org.assertj.core.api.Assertions.assertThat;
import io.dropwizard.jackson.Jackson;
import org.junit.Test;
import com.fasterxml.jackson.databind.ObjectMapper;

public class PersonTest {

 private static final ObjectMapper MAPPER = Jackson.newObjectMapper();

 @Test
 public void serializesToJSON() throws Exception {
 final Person person = new Person("Luther Blissett", "lb@example.com");

 final String expected = MAPPER.writeValueAsString(
 MAPPER.readValue(fixture("fixtures/person.json"), Person.class));

 assertThat(MAPPER.writeValueAsString(person)).isEqualTo(expected);
 }
}

This test uses AssertJ assertions [http://assertj.org/assertj-core-conditions.html] and JUnit [http://www.junit.org/] to test that when a Person instance is serialized
via Jackson it matches the JSON in the fixture file. (The comparison is done on a normalized JSON
string representation, so formatting doesn’t affect the results.)

Testing Deserialization

Next, write a test for deserializing a Person instance from JSON:

import static io.dropwizard.testing.FixtureHelpers.*;
import static org.assertj.core.api.Assertions.assertThat;
import io.dropwizard.jackson.Jackson;
import org.junit.Test;
import com.fasterxml.jackson.databind.ObjectMapper;

public class PersonTest {

 private static final ObjectMapper MAPPER = Jackson.newObjectMapper();

 @Test
 public void deserializesFromJSON() throws Exception {
 final Person person = new Person("Luther Blissett", "lb@example.com");
 assertThat(MAPPER.readValue(fixture("fixtures/person.json"), Person.class))
 .isEqualTo(person);
 }
}

This test uses AssertJ assertions [http://assertj.org/assertj-core-conditions.html] and JUnit [http://www.junit.org/] to test that when a Person instance is
deserialized via Jackson from the specified JSON fixture it matches the given object.

Testing Resources

While many resource classes can be tested just by calling the methods on the class in a test, some
resources lend themselves to a more full-stack approach. For these, use ResourceTestRule, which
loads a given resource instance in an in-memory Jersey server:

import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.Mockito.*;

public class PersonResourceTest {

 private static final PeopleStore dao = mock(PeopleStore.class);

 @ClassRule
 public static final ResourceTestRule resources = ResourceTestRule.builder()
 .addResource(new PersonResource(dao))
 .build();

 private final Person person = new Person("blah", "blah@example.com");

 @Before
 public void setup() {
 when(dao.fetchPerson(eq("blah"))).thenReturn(person);
 }

 @After
 public void tearDown(){
 // we have to reset the mock after each test because of the
 // @ClassRule, or use a @Rule as mentioned below.
 reset(dao);
 }

 @Test
 public void testGetPerson() {
 assertThat(resources.target("/person/blah").request().get(Person.class))
 .isEqualTo(person);
 verify(dao).fetchPerson("blah");
 }
}

Instantiate a ResourceTestRule using its Builder and add the various resource instances you
want to test via ResourceTestRule.Builder#addResource(Object). Use a @ClassRule annotation
to have the rule wrap the entire test class or the @Rule annotation to have the rule wrap
each test individually (make sure to remove static final modifier from resources).

In your tests, use #target(String path), which initializes a request to talk to and test
your instances.

This doesn’t require opening a port, but ResourceTestRule tests will perform all the serialization,
deserialization, and validation that happens inside of the HTTP process.

This also doesn’t require a full integration test. In the above
example, a mocked PeopleStore is passed to the
PersonResource instance to isolate it from the database. Not only does this make the test much
faster, but it allows your resource unit tests to test error conditions and edge cases much more
easily.

Hint

You can trust PeopleStore works because you’ve got working unit tests for it, right?

Default Exception Mappers

By default, a ResourceTestRule will register all the default exception mappers (this behavior is new in 1.0). If
registerDefaultExceptionMappers in the configuration yaml is planned to be set to false,
ResourceTestRule.Builder#setRegisterDefaultExceptionMappers(boolean) will also need to be set to false. Then,
all custom exception mappers will need to be registered on the builder, similarly to how they are registered in an
Application class.

Test Containers

Note that the in-memory Jersey test container does not support all features, such as the @Context injection.
A different test container [https://jersey.github.io/documentation/latest/test-framework.html] can be used via
ResourceTestRule.Builder#setTestContainerFactory(TestContainerFactory).

For example, if you want to use the Grizzly [https://javaee.github.io/grizzly/] HTTP server (which supports @Context injections) you need to add the
dependency for the Jersey Test Framework providers to your Maven POM and set GrizzlyWebTestContainerFactory as
TestContainerFactory in your test classes.

<dependency>
 <groupId>org.glassfish.jersey.test-framework.providers</groupId>
 <artifactId>jersey-test-framework-provider-grizzly2</artifactId>
 <version>${jersey.version}</version>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 </exclusion>
 <exclusion>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 </exclusion>
 </exclusions>
</dependency>

public class ResourceTestWithGrizzly {
 @ClassRule
 public static final ResourceTestRule RULE = ResourceTestRule.builder()
 .setTestContainerFactory(new GrizzlyWebTestContainerFactory())
 .addResource(new ExampleResource())
 .build();

 @Test
 public void testResource() {
 assertThat(RULE.target("/example").request()
 .get(String.class))
 .isEqualTo("example");
 }
}

Testing Client Implementations

To avoid circular dependencies in your projects or to speed up test runs, you can test your HTTP client code
by writing a JAX-RS resource as test double and let the DropwizardClientRule start and stop a simple Dropwizard
application containing your test doubles.

public class CustomClientTest {
 @Path("/ping")
 public static class PingResource {
 @GET
 public String ping() {
 return "pong";
 }
 }

 @ClassRule
 public static final DropwizardClientRule dropwizard = new DropwizardClientRule(new PingResource());

 @Test
 public void shouldPing() throws IOException {
 final URL url = new URL(dropwizard.baseUri() + "/ping");
 final String response = new BufferedReader(new InputStreamReader(url.openStream())).readLine();
 assertEquals("pong", response);
 }
}

Hint

Of course you would use your HTTP client in the @Test method and not java.net.URL#openStream().

The DropwizardClientRule takes care of:

	Creating a simple default configuration.

	Creating a simplistic application.

	Adding a dummy health check to the application to suppress the startup warning.

	Adding your JAX-RS resources (test doubles) to the Dropwizard application.

	Choosing a free random port number (important for running tests in parallel).

	Starting the Dropwizard application containing the test doubles.

	Stopping the Dropwizard application containing the test doubles.

Integration Testing

It can be useful to start up your entire application and hit it with real HTTP requests during testing.
The dropwizard-testing module offers helper classes for your easily doing so.
The optional dropwizard-client module offers more helpers, e.g. a custom JerseyClientBuilder,
which is aware of your application’s environment.

JUnit

Adding DropwizardAppRule to your JUnit test class will start the app prior to any tests
running and stop it again when they’ve completed (roughly equivalent to having used @BeforeClass and @AfterClass).
DropwizardAppRule also exposes the app’s Configuration,
Environment and the app object itself so that these can be queried by the tests.

If you don’t want to use the dropwizard-client module or find it excessive for testing, you can get access to
a Jersey HTTP client by calling the client method on the rule. The returned client is managed by the rule
and can be reused across tests.

public class LoginAcceptanceTest {

 @ClassRule
 public static final DropwizardAppRule<TestConfiguration> RULE =
 new DropwizardAppRule<TestConfiguration>(MyApp.class, ResourceHelpers.resourceFilePath("my-app-config.yaml"));

 @Test
 public void loginHandlerRedirectsAfterPost() {
 Client client = new JerseyClientBuilder(RULE.getEnvironment()).build("test client");

 Response response = client.target(
 String.format("http://localhost:%d/login", RULE.getLocalPort()))
 .request()
 .post(Entity.json(loginForm()));

 assertThat(response.getStatus()).isEqualTo(302);
 }
}

Non-JUnit

By creating a DropwizardTestSupport instance in your test you can manually start and stop the app in your tests, you do this by calling its before and after methods. DropwizardTestSupport also exposes the app’s Configuration, Environment and the app object itself so that these can be queried by the tests.

public class LoginAcceptanceTest {

 public static final DropwizardTestSupport<TestConfiguration> SUPPORT =
 new DropwizardTestSupport<TestConfiguration>(MyApp.class,
 ResourceHelpers.resourceFilePath("my-app-config.yaml"),
 ConfigOverride.config("server.applicationConnectors[0].port", "0") // Optional, if not using a separate testing-specific configuration file, use a randomly selected port
);

 @BeforeClass
 public void beforeClass() {
 SUPPORT.before();
 }

 @AfterClass
 public void afterClass() {
 SUPPORT.after();
 }

 @Test
 public void loginHandlerRedirectsAfterPost() {
 Client client = new JerseyClientBuilder(SUPPORT.getEnvironment()).build("test client");

 Response response = client.target(
 String.format("http://localhost:%d/login", SUPPORT.getLocalPort()))
 .request()
 .post(Entity.json(loginForm()));

 assertThat(response.getStatus()).isEqualTo(302);
 }
}

Testing Commands

Commands can and should be tested, as it’s important to ensure arguments
are interpreted correctly, and the output is as expected.

Below is a test for a command that adds the arguments as numbers and outputs the summation to the
console. The test ensures that the result printed to the screen is correct by capturing standard out
before the command is ran.

public class CommandTest {
 private final PrintStream originalOut = System.out;
 private final PrintStream originalErr = System.err;
 private final InputStream originalIn = System.in;

 private final ByteArrayOutputStream stdOut = new ByteArrayOutputStream();
 private final ByteArrayOutputStream stdErr = new ByteArrayOutputStream();
 private Cli cli;

 @Before
 public void setUp() throws Exception {
 // Setup necessary mock
 final JarLocation location = mock(JarLocation.class);
 when(location.getVersion()).thenReturn(Optional.of("1.0.0"));

 // Add commands you want to test
 final Bootstrap<MyConfiguration> bootstrap = new Bootstrap<>(new MyApplication());
 bootstrap.addCommand(new MyAddCommand());

 // Redirect stdout and stderr to our byte streams
 System.setOut(new PrintStream(stdOut));
 System.setErr(new PrintStream(stdErr));

 // Build what'll run the command and interpret arguments
 cli = new Cli(location, bootstrap, stdOut, stdErr);
 }

 @After
 public void teardown() {
 System.setOut(originalOut);
 System.setErr(originalErr);
 System.setIn(originalIn);
 }

 @Test
 public void myAddCanAddThreeNumbersCorrectly() {
 final boolean success = cli.run("add", "2", "3", "6");

 SoftAssertions softly = new SoftAssertions();
 softly.assertThat(success).as("Exit success").isTrue();

 // Assert that 2 + 3 + 6 outputs 11
 softly.assertThat(stdOut.toString()).as("stdout").isEqualTo("11");
 softly.assertThat(stdErr.toString()).as("stderr").isEmpty();
 softly.assertAll();
 }
}

Testing Database Interactions

In Dropwizard, the database access is managed via the @UnitOfWork annotation used on resource
methods. In case you want to test database-layer code independently, a DAOTestRule is provided
which setups a Hibernate SessionFactory.

public class DatabaseTest {

 @Rule
 public DAOTestRule database = DAOTestRule.newBuilder().addEntityClass(FooEntity.class).build();

 private FooDAO fooDAO;

 @Before
 public void setUp() {
 fooDAO = new FooDAO(database.getSessionFactory());
 }

 @Test
 public createsFoo() {
 FooEntity fooEntity = new FooEntity("bar");
 long id = database.inTransaction(() -> {
 return fooDAO.save(fooEntity);
 });

 assertThat(fooEntity.getId, notNullValue());
 }

 @Test
 public roundtripsFoo() {
 long id = database.inTransaction(() -> {
 return fooDAO.save(new FooEntity("baz"));
 });

 FooEntity fooEntity = fooDAO.get(id);

 assertThat(fooEntity.getFoo(), equalTo("baz"));
 }
}

The DAOTestRule

	Creates a simple default Hibernate configuration using an H2 in-memory database

	Provides a SessionFactory instance which can be passed to, e.g., a subclass of AbstractDAO

	Provides a function for executing database operations within a transaction

Testing Configurations

Configuration objects can be tested for correct deserialization and validation. Using the classes
created in polymorphic configurations as an example, one can
assert the expected widget is deserialized based on the type field.

public class WidgetFactoryTest {
 private final ObjectMapper objectMapper = Jackson.newObjectMapper();
 private final Validator validator = Validators.newValidator();
 private final YamlConfigurationFactory<WidgetFactory> factory =
 new YamlConfigurationFactory<>(WidgetFactory.class, validator, objectMapper, "dw");

 @Test
 public void isDiscoverable() throws Exception {
 // Make sure the types we specified in META-INF gets picked up
 assertThat(new DiscoverableSubtypeResolver().getDiscoveredSubtypes())
 .contains(HammerFactory.class)
 .contains(ChiselFactory.class);
 }

 @Test
 public void testBuildAHammer() throws Exception {
 final File yml = new File(Resources.getResource("yaml/hammer.yml").toURI());
 final WidgetFactory wid = factory.build(yml);
 assertThat(wid).isInstanceOf(HammerFactory.class);
 assertThat(((HammerFactory) wid).createWidget().getWeight()).isEqualTo(10);
 }

 // test for the chisel factory
}

Dropwizard Example, Step by Step

The dropwizard-example module provides you with a working Dropwizard Example Application.

	Preconditions

	Make sure you have Maven [https://maven.apache.org/] installed

	Make sure JAVA_HOME points at JDK 8

	Make sure you have curl

	Preparations to start the Dropwizard Example Application

	Open a terminal / cmd

	Navigate to the project folder of the Dropwizard Example Application

	mvn clean install

	java -jar target/dropwizard-example-1.0.0.jar db migrate example.yml

	The statement above ran the liquibase migration in /src/main/resources/migrations.xml, creating the table schema

	Starting the Dropwizard Example Application

	You can now start the Dropwizard Example Application by running java -jar target/dropwizard-example-1.0.0.jar server example.yml

	Alternatively, you can run the Dropwizard Example Application in your IDE: com.example.helloworld.HelloWorldApplication server example.yml

	Working with the Dropwizard Example Application

	Insert a new person: curl -H "Content-Type: application/json" -d '{"fullName":"John Doe", "jobTitle" : "Chief Wizard" }' http://localhost:8080/people

	Retrieve that person: curl http://localhost:8080/people/1

	View that person in a freemarker template: curl or open in a browser http://localhost:8080/people/1/view_freemarker

	View that person in a mustache template: curl or open in a browser http://localhost:8080/people/1/view_mustache

Dropwizard Configuration Reference

Servers

Tweaking some of the options will require good understanding of how Jetty is working. See the Jetty architecture chapter [http://www.eclipse.org/jetty/documentation/current/architecture.html#basic-architecture] for reference.

server:
 type: default
 maxThreads: 1024

All

	Name

	Default

	Description

	type

	default

	
	default

	simple

	maxThreads

	1024

	The maximum number of threads the thread pool is allowed to grow. Jetty will throw java.lang.IllegalStateException: Insufficient threads: in case of too aggressive limit on the thread count.

	minThreads

	8

	The minimum number of threads to keep alive in the thread pool. Note that each Jetty’s connector consumes threads from the pool. See HTTP connector how the thread counts are calculated.

	maxQueuedRequests

	1024

	The maximum number of requests to queue before blocking
the acceptors.

	idleThreadTimeout

	1 minute

	The amount of time a worker thread can be idle before
being stopped.

	nofileSoftLimit

	(none)

	The number of open file descriptors before a soft error is issued.
Requires Jetty’s libsetuid.so on java.library.path.

	nofileHardLimit

	(none)

	The number of open file descriptors before a hard error is issued.
Requires Jetty’s libsetuid.so on java.library.path.

	gid

	(none)

	The group ID to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	uid

	(none)

	The user ID to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	user

	(none)

	The username to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	group

	(none)

	The group to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	umask

	(none)

	The umask to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	startsAsRoot

	(none)

	Whether or not the Dropwizard application is started as a root user.
Requires Jetty’s libsetuid.so on java.library.path.

	shutdownGracePeriod

	30 seconds

	The maximum time to wait for Jetty, and all Managed instances,
to cleanly shutdown before forcibly terminating them.

	allowedMethods

	GET, POST, PUT, DELETE,
HEAD, OPTIONS, PATCH

	The set of allowed HTTP methods. Others will be rejected with a
405 Method Not Allowed response.

	rootPath

	/*

	The URL pattern relative to applicationContextPath from which
the JAX-RS resources will be served.

	registerDefaultExceptionMappers

	true

	Whether or not the default Jersey ExceptionMappers should be registered.
Set this to false if you want to register your own.

	enableThreadNameFilter

	true

	Whether or not to apply the ThreadNameFilter that adjusts thread names to include the request method and request URI.

GZip

server:
 gzip:
 bufferSize: 8KiB

	Name

	Default

	Description

	enabled

	true

	If true, all requests with gzip or deflate in the Accept-Encoding header will have their
response entities compressed and requests with gzip or deflate in the Content-Encoding
header will have their request entities decompressed.

	minimumEntitySize

	256 bytes

	All response entities under this size are not compressed.

	bufferSize

	8KiB

	The size of the buffer to use when compressing.

	excludedUserAgentPatterns

	[]

	The set of user agent patterns to exclude from compression.

	compressedMimeTypes

	Jetty’s default

	The list of mime types to compress. The default is all types apart
the commonly known image, video, audio and compressed types.

	includedMethods

	Jetty’s default

	The list list of HTTP methods to compress. The default is to compress only GET responses.

	deflateCompressionLevel

	-1

	The compression level used for ZLIB deflation(compression).

	gzipCompatibleInflation

	true

	If true, then ZLIB inflation(decompression) will be performed in the GZIP-compatible mode.

	syncFlush

	false

	The flush mode. Set to true if the application wishes to stream (e.g. SSE) the data,
but this may hurt compression performance (as all pending output is flushed).

Request Log

The new request log uses the logback-access [http://logback.qos.ch/access.html] library for processing request logs, which allow to use an extended set
of logging patterns. See the logback-access-pattern [http://logback.qos.ch/manual/layouts.html#AccessPatternLayout] docs for the reference.

server:
 requestLog:
 appenders:
 - type: console

	Name

	Default

	Description

	appenders

	console appender

	The set of AppenderFactory appenders to which requests will be logged.
See logging for more info.

Classic Request Log

The classic request log uses the logback-classic [http://logback.qos.ch/] library for processing request logs. It produces logs only in the
standard NCSA common log format [https://en.wikipedia.org/wiki/Common_Log_Format], but allows to use an extended set of appenders.

server:
 requestLog:
 type: classic
 timeZone: UTC
 appenders:
 - type: console

	Name

	Default

	Description

	timeZone

	UTC

	The time zone to which request timestamps will be converted.

	appenders

	console appender

	The set of AppenderFactory appenders to which requests will be logged.
See logging for more info.

Server Push

Server push technology allows a server to send additional resources to a client along with the requested resource.
It works only for HTTP/2 connections.

server:
 serverPush:
 enabled: true
 associatePeriod: '4 seconds'
 maxAssociations: 16
 refererHosts: ['dropwizard.io', 'dropwizard.github.io']
 refererPorts: [8444, 8445]

	Name

	Default

	Description

	enabled

	false

	If true, the filter will organize resources as primary resources (those referenced by the
Referer header) and secondary resources (those that have the Referer header). Secondary
resources that have been requested within a time window from the request of the primary resource
will be associated with the it. The next time a client will request the primary resource, the
server will send to the client the secondary resources along with the primary in a single response.

	associatePeriod

	4 seconds

	The time window within which a request for a secondary resource will be associated to a
primary resource..

	maxAssociations

	16

	The maximum number of secondary resources that may be associated to a primary resource.

	refererHosts

	All hosts

	The list of referrer hosts for which the server push technology is supported.

	refererPorts

	All ports

	The list of referrer ports for which the server push technology is supported

Simple

Extends the attributes that are available to all servers

server:
 type: simple
 applicationContextPath: /application
 adminContextPath: /admin
 connector:
 type: http
 port: 8080

	Name

	Default

	Description

	connector

	http connector

	HttpConnectorFactory HTTP connector listening on port 8080.
The ConnectorFactory connector which will handle both application
and admin requests. TODO link to connector below.

	applicationContextPath

	/application

	The context path of the application servlets, including Jersey.

	adminContextPath

	/admin

	The context path of the admin servlets, including metrics and tasks.

Default

Extends the attributes that are available to all servers

server:
 adminMinThreads: 1
 adminMaxThreads: 64
 adminContextPath: /
 applicationContextPath: /
 applicationConnectors:
 - type: http
 port: 8080
 - type: https
 port: 8443
 keyStorePath: example.keystore
 keyStorePassword: example
 validateCerts: false
 adminConnectors:
 - type: http
 port: 8081
 - type: https
 port: 8444
 keyStorePath: example.keystore
 keyStorePassword: example
 validateCerts: false

	Name

	Default

	Description

	applicationConnectors

	An HTTP connector [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java]
listening on port 8080.

	A set of connectors which will
handle application requests.

	adminConnectors

	An HTTP connector [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java]
listening on port 8081.

	An HTTP connector [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java] listening on port 8081.
A set of connectors which will
handle admin requests.

	adminMinThreads

	1

	The minimum number of threads to use for admin requests.

	adminMaxThreads

	64

	The maximum number of threads to use for admin requests.

	adminContextPath

	/

	The context path of the admin servlets, including metrics and tasks.

	applicationContextPath

	/

	The context path of the application servlets, including Jersey.

Connectors

HTTP

Extending from the default server configuration
server:
 applicationConnectors:
 - type: http
 port: 8080
 bindHost: 127.0.0.1 # only bind to loopback
 inheritChannel: false
 headerCacheSize: 512 bytes
 outputBufferSize: 32KiB
 maxRequestHeaderSize: 8KiB
 maxResponseHeaderSize: 8KiB
 inputBufferSize: 8KiB
 idleTimeout: 30 seconds
 minBufferPoolSize: 64 bytes
 bufferPoolIncrement: 1KiB
 maxBufferPoolSize: 64KiB
 minRequestDataRate: 0
 acceptorThreads: 1
 selectorThreads: 2
 acceptQueueSize: 1024
 reuseAddress: true
 soLingerTime: 345s
 useServerHeader: false
 useDateHeader: true
 useForwardedHeaders: true
 httpCompliance: RFC7230

	Name

	Default

	Description

	port

	8080

	The TCP/IP port on which to listen for incoming connections.

	bindHost

	(none)

	The hostname to bind to.

	inheritChannel

	false

	Whether this connector uses a channel inherited from the JVM.
Use it with Server::Starter [https://github.com/kazuho/p5-Server-Starter], to launch an instance of Jetty on demand.

	headerCacheSize

	512 bytes

	The size of the header field cache.

	outputBufferSize

	32KiB

	The size of the buffer into which response content is aggregated before being sent to
the client. A larger buffer can improve performance by allowing a content producer
to run without blocking, however larger buffers consume more memory and may induce
some latency before a client starts processing the content.

	maxRequestHeaderSize

	8KiB

	The maximum size of a request header. Larger headers will allow for more and/or
larger cookies plus larger form content encoded in a URL. However, larger headers
consume more memory and can make a server more vulnerable to denial of service
attacks.

	maxResponseHeaderSize

	8KiB

	The maximum size of a response header. Larger headers will allow for more and/or
larger cookies and longer HTTP headers (eg for redirection). However, larger headers
will also consume more memory.

	inputBufferSize

	8KiB

	The size of the per-connection input buffer.

	idleTimeout

	30 seconds

	The maximum idle time for a connection, which roughly translates to the
java.net.Socket#setSoTimeout(int) [http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html#setSoTimeout(int)] call, although with NIO implementations
other mechanisms may be used to implement the timeout.
The max idle time is applied when waiting for a new message to be received on a connection
or when waiting for a new message to be sent on a connection.
This value is interpreted as the maximum time between some progress being made on the
connection. So if a single byte is read or written, then the timeout is reset.

	blockingTimeout

	(none)

	The timeout applied to blocking operations. This timeout is in addition to
the idleTimeout, and applies to the total operation (as opposed to the
idle timeout that applies to the time no data is being sent).

	minBufferPoolSize

	64 bytes

	The minimum size of the buffer pool.

	bufferPoolIncrement

	1KiB

	The increment by which the buffer pool should be increased.

	maxBufferPoolSize

	64KiB

	The maximum size of the buffer pool.

	minRequestDataRate

	0

	The minimum request data rate in bytes per second; or <= 0 for no limit

	acceptorThreads

	(Jetty’s default)

	The number of worker threads dedicated to accepting connections.
By default is max(1, min(4, #CPUs/8)).

	selectorThreads

	(Jetty’s default)

	The number of worker threads dedicated to sending and receiving data.
By default is max(1, min(4, #CPUs/2)).

	acceptQueueSize

	(OS default)

	The size of the TCP/IP accept queue for the listening socket.

	reuseAddress

	true

	Whether or not SO_REUSEADDR is enabled on the listening socket.

	soLingerTime

	(disabled)

	Enable/disable SO_LINGER with the specified linger time.

	useServerHeader

	false

	Whether or not to add the Server header to each response.

	useDateHeader

	true

	Whether or not to add the Date header to each response.

	useForwardedHeaders

	true

	Whether or not to look at X-Forwarded-* headers added by proxies. See
ForwardedRequestCustomizer [http://download.eclipse.org/jetty/stable-9/apidocs/org/eclipse/jetty/server/ForwardedRequestCustomizer.html] for details.

	httpCompliance

	RFC7230

	This sets the http compliance level used by Jetty when parsing http, this
can be useful when using a non-RFC7230 compliant front end, such as nginx,
which can produce multi-line headers when forwarding client certificates
using proxy_set_header X-SSL-CERT $ssl_client_cert;
Possible values are set forth in the org.eclipse.jetty.http.HttpCompliance
enum:

	RFC7230: Disallow header folding.

	RFC2616: Allow header folding.

HTTPS

Extends the attributes that are available to the HTTP connector

Extending from the default server configuration
server:
 applicationConnectors:
 - type: https
 port: 8443

 keyStorePath: /path/to/file
 keyStorePassword: changeit
 keyStoreType: JKS
 keyStoreProvider:
 trustStorePath: /path/to/file
 trustStorePassword: changeit
 trustStoreType: JKS
 trustStoreProvider:
 keyManagerPassword: changeit
 needClientAuth: false
 wantClientAuth:
 certAlias: <alias>
 crlPath: /path/to/file
 enableCRLDP: false
 enableOCSP: false
 maxCertPathLength: (unlimited)
 ocspResponderUrl: (none)
 jceProvider: (none)
 validateCerts: false
 validatePeers: false
 supportedProtocols: (JVM default)
 excludedProtocols: [SSL, SSLv2, SSLv2Hello, SSLv3] # (Jetty's default)
 supportedCipherSuites: (JVM default)
 excludedCipherSuites: [.*_(MD5|SHA|SHA1)$] # (Jetty's default)
 allowRenegotiation: true
 endpointIdentificationAlgorithm: (none)

	Name

	Default

	Description

	keyStorePath

	REQUIRED

	The path to the Java key store which contains the host certificate and private key.

	keyStorePassword

	REQUIRED

	The password used to access the key store.

	keyStoreType

	JKS

	The type of key store (usually JKS, PKCS12, JCEKS,
Windows-MY}, or Windows-ROOT).

	keyStoreProvider

	(none)

	The JCE provider to use to access the key store.

	trustStorePath

	(none)

	The path to the Java key store which contains the CA certificates used to establish
trust.

	trustStorePassword

	(none)

	The password used to access the trust store.

	trustStoreType

	JKS

	The type of trust store (usually JKS, PKCS12, JCEKS,
Windows-MY, or Windows-ROOT).

	trustStoreProvider

	(none)

	The JCE provider to use to access the trust store.

	keyManagerPassword

	(none)

	The password, if any, for the key manager.

	needClientAuth

	(none)

	Whether or not client authentication is required.

	wantClientAuth

	(none)

	Whether or not client authentication is requested.

	certAlias

	(none)

	The alias of the certificate to use.

	crlPath

	(none)

	The path to the file which contains the Certificate Revocation List.

	enableCRLDP

	false

	Whether or not CRL Distribution Points (CRLDP) support is enabled.

	enableOCSP

	false

	Whether or not On-Line Certificate Status Protocol (OCSP) support is enabled.

	maxCertPathLength

	(unlimited)

	The maximum certification path length.

	ocspResponderUrl

	(none)

	The location of the OCSP responder.

	jceProvider

	(none)

	The name of the JCE provider to use for cryptographic support. See Oracle documentation [https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html] for more information.

	validateCerts

	false

	Whether or not to validate TLS certificates before starting. If enabled, Dropwizard
will refuse to start with expired or otherwise invalid certificates. This option will
cause unconditional failure in Dropwizard 1.x until a new validation mechanism can be
implemented.

	validatePeers

	false

	Whether or not to validate TLS peer certificates. This option will
cause unconditional failure in Dropwizard 1.x until a new validation mechanism can be
implemented.

	supportedProtocols

	(none)

	A list of protocols (e.g., SSLv3, TLSv1) which are supported. All
other protocols will be refused.

	excludedProtocols

	(none)

	A list of protocols (e.g., SSLv3, TLSv1) which are excluded. These
protocols will be refused.

	supportedCipherSuites

	(none)

	A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which
are supported. All other cipher suites will be refused

	excludedCipherSuites

	(none)

	A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which
are excluded. These cipher suites will be refused and exclusion takes higher
precedence than inclusion, such that if a cipher suite is listed in
supportedCipherSuites and excludedCipherSuites, the cipher suite will be
excluded. To verify that the proper cipher suites are being whitelisted and
blacklisted, it is recommended to use the tool sslyze [https://github.com/nabla-c0d3/sslyze].

	allowRenegotiation

	true

	Whether or not TLS renegotiation is allowed.

	endpointIdentificationAlgorithm

	(none)

	Which endpoint identification algorithm, if any, to use during the TLS handshake.

HTTP/2 over TLS

HTTP/2 is a new protocol, intended as a successor of HTTP/1.1. It adds several important features
like binary structure, stream multiplexing over a single connection, header compression, and server push.
At the same time it remains semantically compatible with HTTP/1.1, which should make the upgrade process more
seamless. Checkout HTTP/2 FAQ [https://http2.github.io/faq/] for the further information.

For an encrypted connection HTTP/2 uses ALPN protocol. It’s a TLS extension, that allows a client to negotiate
a protocol to use after the handshake is complete. If either side does not support ALPN, then the protocol will
be ignored, and an HTTP/1.1 connection over TLS will be used instead.

For this connector to work with ALPN protocol you need to either:

	Enable native SSL support via Google’s Conscrypt as described in the SSL section of the
Core manual; or

	Provide alpn-boot library to JVM’s bootpath. The correct library version depends on the JVM version.
Consult Jetty ALPN guide [http://www.eclipse.org/jetty/documentation/current/alpn-chapter.html] for the reference.

Note that your JVM also must provide TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher. The specification states [http://http2.github.io/http2-spec/index.html#rfc.section.9.2.2]
that HTTP/2 deployments must support it to avoid handshake failures. It’s the single supported cipher in HTTP/2
connector by default. In case you want to support more strong ciphers, you should specify them in the
supportedCipherSuites parameter along with TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256.

This connector extends the attributes that are available to the HTTPS connector

server:
 applicationConnectors:
 - type: h2
 port: 8445
 maxConcurrentStreams: 1024
 initialStreamRecvWindow: 65535
 keyStorePath: /path/to/file # required
 keyStorePassword: changeit
 trustStorePath: /path/to/file # required
 trustStorePassword: changeit
 supportedCipherSuites: # optional
 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

	Name

	Default

	Description

	maxConcurrentStreams

	1024

	The maximum number of concurrently open streams allowed on a single HTTP/2
connection. Larger values increase parallelism, but cost a memory commitment.

	initialStreamRecvWindow

	65535

	The initial flow control window size for a new stream. Larger values may allow
greater throughput, but also risk head of line blocking if TCP/IP flow control is
triggered.

HTTP/2 Plain Text

HTTP/2 promotes using encryption, but doesn’t require it. However, most browsers stated that they will
not support HTTP/2 without encryption. Currently no browser supports HTTP/2 unencrypted.

The connector should only be used in closed secured networks or during development. It expects from clients
an HTTP/1.1 OPTIONS request with Upgrade : h2c header to indicate a wish to upgrade to HTTP/2, or a request with
the HTTP/2 connection preface. If the client doesn’t support HTTP/2, a plain HTTP/1.1 connections will be used instead.

This connector extends the attributes that are available to the HTTP connector

server:
 applicationConnectors:
 - type: h2c
 port: 8446
 maxConcurrentStreams: 1024
 initialStreamRecvWindow: 65535

	Name

	Default

	Description

	maxConcurrentStreams

	1024

	The maximum number of concurrently open streams allowed on a single HTTP/2
connection. Larger values increase parallelism, but cost a memory commitment.

	initialStreamRecvWindow

	65535

	The initial flow control window size for a new stream. Larger values may allow
greater throughput, but also risk head of line blocking if TCP/IP flow control is
triggered.

Logging

logging:
 level: INFO
 loggers:
 "io.dropwizard": INFO
 "org.hibernate.SQL":
 level: DEBUG
 additive: false
 appenders:
 - type: file
 currentLogFilename: /var/log/myapplication-sql.log
 archivedLogFilenamePattern: /var/log/myapplication-sql-%d.log.gz
 archivedFileCount: 5
 appenders:
 - type: console

	Name

	Default

	Description

	level

	Level.INFO

	Logback logging level.

	additive

	true

	Logback additive setting.

	loggers

	(none)

	Individual logger configuration (both forms are acceptable).

	appenders

	(none)

	One of console, file or syslog.

Console

logging:
 level: INFO
 appenders:
 - type: console
 threshold: ALL
 queueSize: 512
 discardingThreshold: 0
 timeZone: UTC
 target: stdout
 logFormat: "%-5p [%d{ISO8601,UTC}] %c: %m%n%rEx"
 filterFactories:
 - type: URI

	Name

	Default

	Description

	type

	REQUIRED

	The appender type. Must be console.

	threshold

	ALL

	The lowest level of events to print to the console.

	queueSize

	256

	The maximum capacity of the blocking queue.

	discardingThreshold

	51

	When the blocking queue has only the capacity mentioned in
discardingThreshold remaining, it will drop events of level TRACE,
DEBUG and INFO, keeping only events of level WARN and ERROR.
If no discarding threshold is specified, then a default of queueSize / 5 is used.
To keep all events, set discardingThreshold to 0.

	timeZone

	UTC

	The time zone to which event timestamps will be converted.
To use the system/default time zone, set it to system.

	target

	stdout

	The name of the standard stream to which events will be written.
Can be stdout or stderr.

	logFormat

	%-5p [%d{ISO8601,UTC}] %c: %m%n%rEx

	The Logback pattern with which events will be formatted. See
the Logback [http://logback.qos.ch/manual/layouts.html#conversionWord] documentation for details.

	filterFactories

	(none)

	The list of filters to apply to the appender, in order, after
the threshold.

	neverBlock

	false

	Prevent the wrapping asynchronous appender from blocking when its underlying queue is full.
Set to true to disable blocking.

File

logging:
 level: INFO
 appenders:
 - type: file
 currentLogFilename: /var/log/myapplication.log
 threshold: ALL
 queueSize: 512
 discardingThreshold: 0
 archive: true
 archivedLogFilenamePattern: /var/log/myapplication-%d.log
 archivedFileCount: 5
 timeZone: UTC
 logFormat: "%-5p [%d{ISO8601,UTC}] %c: %m%n%rEx"
 bufferSize: 8KB
 immediateFlush: true
 filterFactories:
 - type: URI

	Name

	Default

	Description

	type

	REQUIRED

	The appender type. Must be file.

	currentLogFilename

	REQUIRED

	The filename where current events are logged.

	threshold

	ALL

	The lowest level of events to write to the file.

	queueSize

	256

	The maximum capacity of the blocking queue.

	discardingThreshold

	51

	When the blocking queue has only the capacity mentioned in discardingThreshold
remaining, it will drop events of level TRACE, DEBUG and INFO, keeping only events
of level WARN and ERROR. If no discarding threshold is specified, then a default
of queueSize / 5 is used. To keep all events, set discardingThreshold to 0.

	archive

	true

	Whether or not to archive old events in separate files.

	archivedLogFilenamePattern

	(none)

	Required if archive is true.
The filename pattern for archived files.
If maxFileSize is specified, rollover is size-based, and the pattern must contain %i for
an integer index of the archived file.
Otherwise rollover is date-based, and the pattern must contain %d, which is replaced with the
date in yyyy-MM-dd form.
If the pattern ends with .gz or .zip, files will be compressed as they are archived.

	archivedFileCount

	5

	The number of archived files to keep. Must be greater than or equal to 0. Zero is a
special value signifying to keep infinite logs (use with caution)

	maxFileSize

	(unlimited)

	The maximum size of the currently active file before a rollover is triggered. The value can be
expressed in bytes, kilobytes, megabytes, gigabytes, and terabytes by appending B, K, MB, GB, or
TB to the numeric value. Examples include 100MB, 1GB, 1TB. Sizes can also be spelled out, such
as 100 megabytes, 1 gigabyte, 1 terabyte.

	timeZone

	UTC

	The time zone to which event timestamps will be converted.

	logFormat

	%-5p [%d{ISO8601,UTC}] %c: %m%n%rEx

	The Logback pattern with which events will be formatted. See
the Logback [http://logback.qos.ch/manual/layouts.html#conversionWord] documentation for details.

	filterFactories

	(none)

	The list of filters to apply to the appender, in order, after
the threshold.

	neverBlock

	false

	Prevent the wrapping asynchronous appender from blocking when its underlying queue is full.
Set to true to disable blocking.

	bufferSize

	8KB

	The buffer size of the underlying FileAppender (setting added in logback 1.1.10). Increasing this
from the default of 8KB to 256KB is reported to significantly reduce thread contention.

	immediateFlush

	true

	If set to true, log events will be immediately flushed to disk. Immediate flushing is safer, but
it degrades logging throughput.

Syslog

logging:
 level: INFO
 appenders:
 - type: syslog
 host: localhost
 port: 514
 facility: local0
 threshold: ALL
 stackTracePrefix: \t
 logFormat: "%-5p [%d{ISO8601,UTC}] %c: %m%n%rEx"
 filterFactories:
 - type: URI

	Name

	Default

	Description

	host

	localhost

	The hostname of the syslog server.

	port

	514

	The port on which the syslog server is listening.

	facility

	local0

	The syslog facility to use. Can be either auth, authpriv,
daemon, cron, ftp, lpr, kern, mail,
news, syslog, user, uucp, local0,
local1, local2, local3, local4, local5,
local6, or local7.

	threshold

	ALL

	The lowest level of events to write to the file.

	logFormat

	%-5p [%d{ISO8601,UTC}] %c: %m%n%rEx

	The Logback pattern with which events will be formatted. See
the Logback [http://logback.qos.ch/manual/layouts.html#conversionWord] documentation for details.

	stackTracePrefix

	t

	The prefix to use when writing stack trace lines (these are sent
to the syslog server separately from the main message)

	filterFactories

	(none)

	The list of filters to apply to the appender, in order, after
the threshold.

	neverBlock

	false

	Prevent the wrapping asynchronous appender from blocking when its underlying queue is full.
Set to true to disable blocking.

TCP

logging:
 level: INFO
 appenders:
 - type: tcp
 host: localhost
 port: 4560
 connectionTimeout: 500ms
 immediateFlush: true
 sendBufferSize: 8KB

	Name

	Default

	Description

	host

	localhost

	The hostname of the TCP server.

	port

	4560

	The port on which the TCP server is listening.

	connectionTimeout

	500ms

	The timeout to connect to the TCP server.

	immediateFlush

	true

	If set to true, log events will be immediately send to the server
Immediate flushing is safer, but it degrades logging throughput.

	sendBufferSize

	8KB

	The buffer size of the underlying SocketAppender.
Takes into effect if immediateFlush is disabled.

UDP

logging:
 level: INFO
 appenders:
 - type: udp
 host: localhost
 port: 514

	Name

	Default

	Description

	host

	localhost

	The hostname of the UDP server.

	port

	514

	The port on which the UDP server is listening.

FilterFactories

logging:
 level: INFO
 appenders:
 - type: console
 filterFactories:
 - type: URI

	Name

	Default

	Description

	type

	REQUIRED

	The filter type.

JSON layout

layout:
 type: json
 timestampFormat: "yyyy-MM-dd'T'HH:mm:ss.SSSZ"
 prettyPrint: false
 appendLineSeparator: true
 includes: [timestamp, threadName, level, loggerName, message, mdc, exception]
 customFieldNames:
 timestamp: "@timestamp"
 additionalFields:
 service-name: "user-service"
 includesMdcKeys: [userId]

	Name

	Default

	Description

	timestampFormat

	(none)

	By default, the timestamp is not formatted. To customize how timestamps are formatted,
set the property to the corresponding DateTimeFormatter [https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html] string or one of the
predefined formats (e.g. ISO_LOCAL_TIME, ISO_ZONED_DATE_TIME, RFC_1123_DATE_TIME).

	prettyPrint

	false

	Whether the JSON output should be formatted for human readability.

	appendLineSeparator

	true

	Whether to append a line separator at the end of the message formatted as JSON.

	includes

	(timestamp, level,
threadName, mdc,
loggerName, message,
exception)

	Set of logging event attributes to include in the JSON map:

	timestamp true Whether to include the timestamp as the timestamp field.

	level true Whether to include the logging level as the level field.

	threadName true Whether to include the thread name as the thread field.

	mdc true Whether to include the MDC properties as the mdc field.

	loggerName true Whether to include the logger name as the logger field.

	message true Whether to include the formatted message as the message field.

	exception true Whether to log exceptions. If the property enabled and there is an exception, it will be formatted to a string as the exception field.

	contextName false Whether to include the logging context name as the context field .

	customFieldNames

	(empty)

	Map of field name replacements . For example (requestTime:request_time, userAgent:user_agent).

	additionalFields

	(empty)

	Map of fields to add in the JSON map.

	includesMdcKeys

	(empty)

	Set of MDC keys which should be included in the JSON map. By default includes everything.

JSON access log layout

layout:
 type: access-json
 timestampFormat: "yyyy-MM-dd'T'HH:mm:ss.SSSZ"
 prettyPrint: false
 appendLineSeparator: true
 includes: [timestamp, remoteAddress, remoteUser, protocol, method, requestUri, statusCode, requestTime, contentLength, userAgent]
 requestHeaders:
 - X-Request-Id
 responseHeaders:
 - X-Request-Id
 customFieldNames:
 timestamp: "@timestamp"
 additionalFields:
 service-name: "user-service"

	Name

	Default

	Description

	timestampFormat

	(none)

	By default, the timestamp is not formatted. To customize how timestamps are formatted,
set the property to the corresponding DateTimeFormatter [https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html] string or one of the predefined formats
(e.g. ISO_LOCAL_TIME, ISO_ZONED_DATE_TIME,``RFC_1123_DATE_TIME``).

	prettyPrint

	false

	Whether the JSON output should be formatted for human readability.

	appendLineSeparator

	true

	Whether to append a line separator at the end of the message formatted as JSON.

	includes

	(timestamp, remoteAddress,
protocol, method,
requestUri, statusCode,
requestTime, contentLength,
userAgent)

	Set of logging event attributes to include in the JSON map:

	contentLength true Whether to include the response content length, if it’s known as the contentLength field.

	method true Whether to include the request HTTP method as the method field.

	remoteAddress true Whether to include the IP address of the client or last proxy that sent the request as the remoteAddress field.

	remoteUser true Whether to include information about the remote user as the remoteUser field.

	requestTime true Whether to include the time elapsed between receiving the request and logging it as the requestTime field. Time is in ms.

	requestUri true Whether to include the URI of the request as the uri field.

	statusCode true Whether to include the status code of the response as the status field.

	protocol true Whether to include the request HTTP protocol as the protocol field.

	timestamp true Whether to include the timestamp of the event the timestamp field.

	userAgent true Whether to include the user agent of the request as the userAgent field.

	requestParameters false Whether to include the request parameters as the params field.

	requestContent false Whether to include the body of the request as the requestContent field.

	requestUrl false Whether to include the request URL (method, URI, query parameters, protocol) as the contentLength field.

	remoteHost false Whether to include the fully qualified name of the client or the last proxy that sent the request as the remoteHost field.

	responseContent false Whether to include the response body as the responseContent field.

	serverName false Whether to include the name of the server to which the request was sent as the serverName field.

	requestHeaders

	(empty)

	Set of request headers included in the JSON map as the headers field.

	responseHeaders

	(empty)

	Set of response headers included in the JSON map as the responseHeaders field.

	customFieldNames

	(empty)

	Map of field name replacements in the JSON map. For example requestTime:request_time, userAgent:user_agent).

	additionalFields

	(empty)

	Map of fields to add in the JSON map.

Metrics

The metrics configuration has two fields; frequency and reporters.

metrics:
 frequency: 1 minute
 reporters:
 - type: <type>

	Name

	Default

	Description

	frequency

	1 minute

	The frequency to report metrics. Overridable per-reporter.

	reporters

	(none)

	A list of reporters to report metrics.

All Reporters

The following options are available for all metrics reporters.

metrics:
 reporters:
 - type: <type>
 durationUnit: milliseconds
 rateUnit: seconds
 excludes: (none)
 includes: (all)
 excludesAttributes: (none)
 includesAttributes: (all)
 useRegexFilters: false
 frequency: 1 minute

	Name

	Default

	Description

	durationUnit

	milliseconds

	The unit to report durations as. Overrides per-metric duration units.

	rateUnit

	seconds

	The unit to report rates as. Overrides per-metric rate units.

	excludes

	(none)

	Metrics to exclude from reports, by name. When defined, matching metrics will not be reported.

	includes

	(all)

	Metrics to include in reports, by name. When defined, only these metrics will be reported.

	excludesAttributes

	(none)

	Metric attributes to exclude from reports, by name (e.g. p98, m15_rate, stddev).
When defined, matching metrics attributes will not be reported.

	includesAttributes

	(all)

	Metrics attributes to include in reports, by name (e.g. p98, m15_rate, stddev).
When defined, only these attributes will be reported.

	useRegexFilters

	false

	Indicates whether the values of the ‘includes’ and ‘excludes’ fields should be treated as regular expressions or not.

	useSubstringMatching

	false

	Uses a substring matching strategy to determine whether a metric should be processed.

	frequency

	(none)

	The frequency to report metrics. Overrides the default.

The inclusion and exclusion rules are defined as:

	If includes is empty, then all metrics are included;

	If includes is not empty, only metrics from this list are included;

	If excludes is empty, no metrics are excluded;

	If excludes is not empty, then exclusion rules take precedence over inclusion rules. Thus if a name matches the exclusion rules it will not be included in reports even if it also matches the inclusion rules.

When neither useRegexFilters nor useSubstringMatching are enabled, a default exact matching strategy will be used to determine whether a metric should be processed.
In case both useRegexFilters and useSubstringMatching are set, useRegexFilters takes precedence over useSubstringMatching.

Formatted Reporters

These options are available only to “formatted” reporters and extend the options available to all reporters

metrics:
 reporters:
 - type: <type>
 locale: <system default>

	Name

	Default

	Description

	locale

	System default

	The Locale [http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html] for formatting numbers, dates and times.

Console Reporter

Reports metrics periodically to the console.

Extends the attributes that are available to formatted reporters

metrics:
 reporters:
 - type: console
 timeZone: UTC
 output: stdout

	Name

	Default

	Description

	timeZone

	UTC

	The timezone to display dates/times for.

	output

	stdout

	The stream to write to. One of stdout or stderr.

CSV Reporter

Reports metrics periodically to a CSV file.

Extends the attributes that are available to formatted reporters

metrics:
 reporters:
 - type: csv
 file: /path/to/file

	Name

	Default

	Description

	file

	No default

	The CSV file to write metrics to.

Ganglia Reporter

Reports metrics periodically to Ganglia.

Extends the attributes that are available to all reporters

Note

You will need to add dropwizard-metrics-ganglia to your POM.

metrics:
 reporters:
 - type: ganglia
 host: localhost
 port: 8649
 mode: unicast
 ttl: 1
 uuid: (none)
 spoof: localhost:8649
 tmax: 60
 dmax: 0

	Name

	Default

	Description

	host

	localhost

	The hostname (or group) of the Ganglia server(s) to report to.

	port

	8649

	The port of the Ganglia server(s) to report to.

	mode

	unicast

	The UDP addressing mode to announce the metrics with. One of unicast
or multicast.

	ttl

	1

	The time-to-live of the UDP packets for the announced metrics.

	uuid

	(none)

	The UUID to tag announced metrics with.

	spoof

	(none)

	The hostname and port to use instead of this nodes for the announced metrics.
In the format hostname:port.

	tmax

	60

	The tmax value to announce metrics with.

	dmax

	0

	The dmax value to announce metrics with.

Graphite Reporter

Reports metrics periodically to Graphite.

Extends the attributes that are available to all reporters

Note

You will need to add dropwizard-metrics-graphite to your POM.

metrics:
 reporters:
 - type: graphite
 host: localhost
 port: 2003
 prefix: <prefix>
 transport: tcp

	Name

	Default

	Description

	host

	localhost

	The hostname of the Graphite server to report to.

	port

	2003

	The port of the Graphite server to report to.

	prefix

	(none)

	The prefix for Metric key names to report to Graphite.

	transport

	tcp

	The type of transport to report to Graphite with (“tcp” or “udp”).

SLF4J

Reports metrics periodically by logging via SLF4J.

Extends the attributes that are available to all reporters

See BaseReporterFactory [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseReporterFactory.java] and BaseFormattedReporterFactory [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseFormattedReporterFactory.java] for more options.

metrics:
 reporters:
 - type: log
 logger: metrics
 markerName: <marker name>

	Name

	Default

	Description

	logger

	metrics

	The name of the logger to write metrics to.

	markerName

	(none)

	The name of the marker to mark logged metrics with.

Clients

HttpClient

See HttpClientConfiguration [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java] for more options.

httpClient:
 timeout: 500ms
 connectionTimeout: 500ms
 timeToLive: 1h
 cookiesEnabled: false
 maxConnections: 1024
 maxConnectionsPerRoute: 1024
 keepAlive: 0ms
 retries: 0
 userAgent: <application name> (<client name>)

	Name

	Default

	Description

	timeout

	500 milliseconds

	The maximum idle time for a connection, once established.

	connectionTimeout

	500 milliseconds

	The maximum time to wait for a connection to open.

	connectionRequestTimeout

	500 milliseconds

	The maximum time to wait for a connection to be returned from the connection pool.

	timeToLive

	1 hour

	The maximum time a pooled connection can stay idle (not leased to any thread)
before it is shut down.

	cookiesEnabled

	false

	Whether or not to enable cookies.

	maxConnections

	1024

	The maximum number of concurrent open connections.

	maxConnectionsPerRoute

	1024

	The maximum number of concurrent open connections per route.

	keepAlive

	0 milliseconds

	The maximum time a connection will be kept alive before it is reconnected. If set
to 0, connections will be immediately closed after every request/response.

	retries

	0

	The number of times to retry failed requests. Requests are only
retried if they throw an exception other than InterruptedIOException,
UnknownHostException, ConnectException, or SSLException.

	userAgent

	applicationName (clientName)

	The User-Agent to send with requests.

	validateAfterInactivityPeriod

	0 milliseconds

	The maximum time before a persistent connection is checked to remain active.
If set to 0, no inactivity check will be performed.

Proxy

httpClient:
 proxy:
 host: 192.168.52.11
 port: 8080
 scheme : http
 auth:
 username: secret
 password: stuff
 authScheme: NTLM
 realm: realm
 hostname: host
 domain: WINDOWSDOMAIN
 credentialType: NT
 nonProxyHosts:
 - localhost
 - '192.168.52.*'
 - '*.example.com'

	Name

	Default

	Description

	host

	REQUIRED

	The proxy server host name or ip address.

	port

	(scheme default)

	The proxy server port.
If the port is not set then the scheme default port is used.

	scheme

	http

	The proxy server URI scheme. HTTP and HTTPS schemas are permitted.
By default HTTP scheme is used.

	auth

	(none)

	The proxy server Basic or NTLM authentication schemes.
If they are not set then no credentials will be passed to the server.

	username

	REQUIRED

	The username used to connect to the server.

	password

	REQUIRED

	The password used to connect to the server.

	authScheme

	Basic

	The authentication scheme used by the. Allowed options are:
Basic, NTLM

	realm

	(none)

	The realm, used for NTLM authentication.

	hostname

	(none)

	The hostname of the windows workstation, used for NTLM authentication.

	domain

	(none)

	The Windows Domain, used for NTLM authentication.

	credentialType

	(none)

	The Apache HTTP Client Credentials imeplementation used for proxy authentication.
Allowed options are: UsernamePassword or NT

	nonProxyHosts

	(none)

	List of patterns of hosts that should be reached without proxy.
The patterns may contain symbol ‘*’ as a wildcard.
If a host matches one of the patterns it will be reached through a direct connection.

TLS

httpClient:
 tls:
 protocol: TLSv1.2
 provider: SunJSSE
 verifyHostname: true
 keyStorePath: /path/to/file
 keyStorePassword: changeit
 keyStoreType: JKS
 trustStorePath: /path/to/file
 trustStorePassword: changeit
 trustStoreType: JKS
 trustSelfSignedCertificates: false
 supportedProtocols: TLSv1.1,TLSv1.2
 supportedCipherSuites: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
 certAlias: alias-of-specific-cert

	Name

	Default

	Description

	protocol

	TLSv1.2

	The default protocol the client will attempt to use during the SSL Handshake.
See
here [http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#SSLContext] for more information.

	provider

	(none)

	The name of the JCE provider to use on client side for cryptographic support (for example, SunJCE, Conscrypt, BC, etc).
See Oracle documentation [https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html] for more information.

	verifyHostname

	true

	Whether to verify the hostname of the server against the hostname presented in the server certificate.

	keyStorePath

	(none)

	The path to the Java key store which contains the client certificate and private key.

	keyStorePassword

	(none)

	The password used to access the key store.

	keyStoreType

	JKS

	The type of key store (usually JKS, PKCS12, JCEKS, Windows-MY, or Windows-ROOT).

	trustStorePath

	(none)

	The path to the Java key store which contains the CA certificates used to establish trust.

	trustStorePassword

	(none)

	The password used to access the trust store.

	trustStoreType

	JKS

	The type of trust store (usually JKS, PKCS12, JCEKS, Windows-MY, or Windows-ROOT).

	trustSelfSignedCertificates

	false

	If true, will trust all self-signed certificates regardless of trustStore settings.
If false, trust decisions will be handled by the supplied trustStore.

	supportedProtocols

	(none)

	A list of protocols (e.g., SSLv3, TLSv1) which are supported. All
other protocols will be refused.

	supportedCipherSuites

	(none)

	A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which
are supported. All other cipher suites will be refused.

	certAlias

	(none)

	The alias of a specific client certificate to present when authenticating. Use this when
the specified keystore has multiple certificates to force use of a non-default certficate.

JerseyClient

Extends the attributes that are available to http clients

See JerseyClientConfiguration [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/JerseyClientConfiguration.java] and HttpClientConfiguration [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java] for more options.

jerseyClient:
 minThreads: 1
 maxThreads: 128
 workQueueSize: 8
 gzipEnabled: true
 gzipEnabledForRequests: true
 chunkedEncodingEnabled: true

	Name

	Default

	Description

	minThreads

	1

	The minimum number of threads in the pool used for asynchronous requests.

	maxThreads

	128

	The maximum number of threads in the pool used for asynchronous requests. If asynchronous requests made by jersey client while serving requests, the number must be set according to the maxThread setting of the server. Otherwise some requests made to dropwizard on heavy load may fail due to congestion on the jersey client’s thread pool.

	workQueueSize

	8

	The size of the work queue of the pool used for asynchronous requests.
Additional threads will be spawn only if the queue is reached its maximum size.

	gzipEnabled

	true

	Adds an Accept-Encoding: gzip header to all requests, and enables automatic gzip decoding of responses.

	gzipEnabledForRequests

	true

	Adds a Content-Encoding: gzip header to all requests, and enables automatic gzip encoding of requests.

	chunkedEncodingEnabled

	true

	Enables the use of chunked encoding for requests.

Database

database:
 driverClass : org.postgresql.Driver
 url: 'jdbc:postgresql://db.example.com/db-prod'
 user: pg-user
 password: iAMs00perSecrEET

	Name

	Default

	Description

	driverClass

	REQUIRED

	The full name of the JDBC driver class.

	url

	REQUIRED

	The URL of the server.

	user

	none

	The username used to connect to the server.

	password

	none

	The password used to connect to the server.

	removeAbandoned

	false

	Remove abandoned connections if they exceed
removeAbandonedTimeout. If set to true a connection is
considered abandoned and eligible for removal if it has been in
use longer than the removeAbandonedTimeout and the condition
for abandonWhenPercentageFull is met.

	removeAbandonedTimeout

	60 seconds

	The time before a database connection can be considered
abandoned.

	abandonWhenPercentageFull

	0

	Connections that have been abandoned (timed out) won’t get
closed and reported up unless the number of connections in use
are above the percentage defined by abandonWhenPercentageFull.
The value should be between 0-100.

	alternateUsernamesAllowed

	false

	Set to true if the call getConnection(username,password) is
allowed. This is used for when the pool is used by an
application accessing multiple schemas. There is a
performance impact turning this option on, even when not used.

	commitOnReturn

	false

	Set to true if you want the connection pool to commit any
pending transaction when a connection is returned.

	rollbackOnReturn

	false

	Set to true if you want the connection pool to rollback any
pending transaction when a connection is returned.

	autoCommitByDefault

	JDBC driver’s default

	The default auto-commit state of the connections.

	readOnlyByDefault

	JDBC driver’s default

	The default read-only state of the connections.

	properties

	none

	Any additional JDBC driver parameters.

	defaultCatalog

	none

	The default catalog to use for the connections.

	defaultTransactionIsolation

	JDBC driver’s default

	The default transaction isolation to use for the connections.
Can be one of none, default, read-uncommitted, read-committed,
repeatable-read, or serializable.

	useFairQueue

	true

	If true, calls to getConnection are handled in a FIFO manner.

	initialSize

	10

	The initial size of the connection pool.

	minSize

	10

	The minimum size of the connection pool.

	maxSize

	100

	The maximum size of the connection pool.

	initializationQuery

	none

	A custom query to be run when a connection is first created.

	logAbandonedConnections

	false

	If true, logs stack traces of abandoned connections.

	logValidationErrors

	false

	If true, logs errors when connections fail validation.

	maxConnectionAge

	none

	If set, connections which have been open for longer than
maxConnectionAge are closed when returned.

	maxWaitForConnection

	30 seconds

	If a request for a connection is blocked for longer than this
period, an exception will be thrown.

	minIdleTime

	1 minute

	The minimum amount of time an connection must sit idle in the
pool before it is eligible for eviction.

	validationQuery

	SELECT 1

	The SQL query that will be used to validate connections from
this pool before returning them to the caller or pool.
If specified, this query does not have to return any data, it
just can’t throw a SQLException.(FireBird will throw exception unless validationQuery set to select 1 from rdb$database)

	validationQueryTimeout

	none

	The timeout before a connection validation queries fail.

	checkConnectionWhileIdle

	true

	Set to true if query validation should take place while the
connection is idle.

	checkConnectionOnBorrow

	false

	Whether or not connections will be validated before being
borrowed from the pool. If the connection fails to validate,
it will be dropped from the pool, and another will be
borrowed.

	checkConnectionOnConnect

	false

	Whether or not connections will be validated before being
added to the pool. If the connection fails to validate,
it won’t be added to the pool.

	checkConnectionOnReturn

	false

	Whether or not connections will be validated after being
returned to the pool. If the connection fails to validate, it
will be dropped from the pool.

	autoCommentsEnabled

	true

	Whether or not ORMs should automatically add comments.

	evictionInterval

	5 seconds

	The amount of time to sleep between runs of the idle
connection validation, abandoned cleaner and idle pool
resizing.

	validationInterval

	30 seconds

	To avoid excess validation, only run validation once every
interval.

	validatorClassName

	none

	Name of a class of a custom validator implementation, which
will be used for validating connections.

	jdbcInterceptors

	none

	A semicolon separated list of JDBC interceptor classnames.

	ignoreExceptionOnPreLoad

	false

	Flag whether ignore error of connection creation while
initializing the pool. Set to true if you want to ignore
error of connection creation while initializing the pool.
Set to false if you want to fail the initialization of the
pool by throwing exception.

Polymorphic configuration

The dropwizard-configuration module provides you with a polymorphic configuration
mechanism, meaning that a particular section of your configuration file can be implemented
using one or more configuration classes.

To use this capability for your own configuration classes, create a top-level configuration interface or class that
implements Discoverable and add the name of that class to META-INF/services/io.dropwizard.jackson.Discoverable.
Make sure to use Jackson polymorphic deserialization [http://wiki.fasterxml.com/JacksonPolymorphicDeserialization] annotations appropriately.

@JsonTypeInfo(use = Id.NAME, include = As.PROPERTY, property = "type")
interface WidgetFactory extends Discoverable {
 Widget createWidget();
}

Then create subtypes of the top-level type corresponding to each alternative, and add their names to
META-INF/services/WidgetFactory.

@JsonTypeName("hammer")
public class HammerFactory implements WidgetFactory {
 @JsonProperty
 private int weight = 10;

 @Override
 public Hammer createWidget() {
 return new Hammer(weight);
 }
}

@JsonTypeName("chisel")
public class ChiselFactory implements WidgetFactory {
 @JsonProperty
 private float radius = 1;

 @Override
 public Chisel createWidget() {
 return new Chisel(radius);
 }
}

Now you can use WidgetFactory objects in your application’s configuration.

public class MyConfiguration extends Configuration {
 @JsonProperty
 @NotNull
 @Valid
 private List<WidgetFactory> widgets;
}

widgets:
 - type: hammer
 weight: 20
 - type: chisel
 radius: 0.4

See testing configurations for details on ensuring the
configuration will be deserialized correctly.

Dropwizard Internals

You already read through the whole Dropwizard documentation?
Congrats! Then you are ready to have a look into some nitty-gritty details of Dropwizard.

Startup Sequence

Application<T extends Configuration> is the “Main” class of a dropwizard Application.

application.run(args) is the first method to be called on startup - Here is a simplified code snippet of its implementation:

public void run(String... arguments) throws Exception {

 final Bootstrap<T> bootstrap = new Bootstrap<>(this);
 bootstrap.addCommand(new ServerCommand<>(this));
 bootstrap.addCommand(new CheckCommand<>(this));

 initialize(bootstrap); // -- implemented by you; it should call:
 // 1. add bundles (typically being used)
 // 2. add commands (if any)

 // Should be called after `initialize` to give an opportunity to set a custom metric registry
 bootstrap.registerMetrics(); // start tracking some default jvm params…

 // for each cmd, configure parser w/ cmd
 final Cli cli = new Cli(new JarLocation(getClass()), bootstrap, our, err)
 cli.run(arguments);
}

Bootstrap is the the pre-start (temp) application environment, containing everything required to bootstrap a Dropwizard command. Here is a simplified code snippet to illustrate its structure:

Bootstrap(application: Application<T>) {
 this.application = application;
 this.objectMapper = Jackson.newObjectMapper();
 this.bundles = new ArrayList<>();
 this.configuredBundles = new ArrayList<>();
 this.commands = new ArrayList<>();
 this.validatorFactory = Validators.newValidatorFactory();
 this.metricRegistry = new MetricRegistry();
 this.classLoader = Thread.currentThread().getContextClassLoader();
 this.onfigurationFactory = new DefaultConfigurationFactoryFactory<>();
 this.healthCheckRegistry = new HealthCheckRegistry();
}

Environment is a longer-lived object, holding Dropwizard’s Environment (not env. Such as dev or prod). It holds a similar, but somewhat different set of properties than the Bootsrap object - here is a simplified code snippet to illustrate that:

Environment (...) {
 // from bootstrap
 this.objectMapper = ...
 this.classLoader = ...
 this.metricRegistry = ...
 this.healthCheckRegistry = ...
 this.validator = bootstrap.getValidatorFactory().getValidator()

 // extra:
 this.bundles = new ArrayList<>();
 this.configuredBundles = new ArrayList<>();

 // sub-environments:
 this.servletEnvironment = ... // -- exposed via the servlets() method
 this.jerseyEnvironment = ... // -- exposed via the jersey() method
 this.adminEnvironment = ... // -- exposed via the admin() method

}

A Dropwizard Bundle is a reusable group of functionality (sometimes provided by the Dropwizard project itself), used to define blocks of an application’s behavior.
For example, AssetBundle from the dropwizard-assets module provides a simple way to serve static assets from your application’s src/main/resources/assets directory as files available from /assets/* (or any other path) in your application.

A ConfiguredBundle is a bundle that require a configuration provided by the Configuration object (implementing a relevant interface)

Properties such as database connection details should not be stored on the Environment; that is what your Configuration .yml file is for.
Each logical environment (dev/test/staging/prod) - would have its own Configuration .yml - reflecting the differences between different “server environments”.

Commands

Command objects are basic actions, which Dropwizard runs based on the arguments provided on the command line. The built-in server command, for example, spins up an HTTP server and runs your application. Each Command subclass has a name and a set of command line options which Dropwizard will use to parse the given command line arguments.
The check command parses and validates the application’s configuration.

If you will check again the first code snippet in this document - you will see creating these two commands, is the first step in the bootstrapping process.

Another important command is db - allowing executing various db actions, see Dropwizard Migrations

Similar to ConfiguredBundle, some commands require access to configuration parameters and should extend the ConfiguredCommand class, using your application’s Configuration class as its type parameter.

The CLI class

Let us begin with a simplified version of the constructor:

public Cli(location : JarLocation, bootstrap : Bootstrap<?>,
 stdOut: OutputStream, stdErr: OutputStream) {
 this.stdout = stdOut; this.stdErr = stdErr;
 this.commands = new TreeMap<>();
 this.parser = buildParser(location);
 this.bootstrap = bootstrap;
 for (command in bootstrap.commands) {
 addCommand(command)
 }
}

Cli is the command-line runner for Dropwizard application.
Initializing, and then running it - is the last step of the Bootstrapping process.

Run would just handle commandline args (–help, –version) or runs the configured commands.
E.g. - When running the server command:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar server hello-world.yml

Just note the two basic commands are built of a parent, and a sub-class:

class CheckCommand<T extends Configuration> extends ConfiguredCommand<T>
class ServerCommand<T extends Configuration> extends EnvironmentCommand<T>

The order of operations is therefore:

	Parse cmdline args, determine subcommand.

	Run ConfiguredCommand, which get a parameter with the location of a YAML configuration file - parses and validates it.

	CheckCommand.run() runs next, and does almost nothing: it logs "Configuration is OK"

	Run EnvironmentCommand:

	Create Environment

	Calls bootstrap.run(cfg, env) - run bundles with config. & env.

	Bundles run in FIFO order.

	Calls application.run(cfg, env) – implemented by you

	Now, ServerCommand.run() runs

	Calls serverFactory.build(environment) - to configure Jetty and Jersey, with all relevant Dropwizard modules.

	Starts Jetty.

Jetty Lifecycle

If you have a component of your app that needs to know when Jetty is going to start,
you can implement Managed as described in the dropwizard docs.

If you have a component that needs to be signaled that Jetty has started
(this happens after all Managed objects’ start() methods are called),
you can register with the env’s lifecycle like:

env.lifecycle().addServerLifecycleListener(new ServerLifecycleListener() {
 @Override
 public void serverStarted(Server server) {
 /// ... do things here
 }
});

Javadoc

	dropwizard-auth

	dropwizard-client

	dropwizard-configuration

	dropwizard-core

	dropwizard-db

	dropwizard-forms

	dropwizard-hibernate

	dropwizard-jackson

	dropwizard-jdbi

	dropwizard-jersey

	dropwizard-jetty

	dropwizard-lifecycle

	dropwizard-logging

	dropwizard-metrics

	dropwizard-metrics-ganglia

	dropwizard-metrics-graphite

	dropwizard-migrations

	dropwizard-servlets

	dropwizard-spdy

	dropwizard-testing

	dropwizard-util

	dropwizard-validation

	dropwizard-views

	dropwizard-views-freemarker

	dropwizard-views-mustache

About Dropwizard

	Contributors

	Sponsors
	JetBrains

	Frequently Asked Questions

	Release Notes
	v1.3.5: Jun 25, 2018

	v1.2.8: Jun 25, 2018

	v1.1.8: Jun 25, 2018

	v1.3.4: Jun 14, 2018

	v1.2.7: Jun 14, 2018

	v1.3.3: Jun 6, 2018

	v1.3.2: May 11, 2018

	v1.2.6: May 11, 2018

	v1.3.1: Apr 4, 2018

	v1.2.5: Apr 4, 2018

	v1.3.0: Mar 14, 2018

	v1.2.4: Feb 23, 2018

	v1.1.7: Feb 23, 2018

	v1.2.3: Jan 24, 2018

	v1.2.2: Nov 27, 2017

	v1.2.1: Nov 22, 2017

	v1.1.6: Nov 2, 2017

	v1.1.5: Oct 17, 2017

	v1.2.0: Oct 6 2017

	v1.1.4: Aug 24 2017

	v1.1.3: Jul 31 2017

	v1.1.2 June 27 2017

	v1.0.8 June 27 2017

	v1.1.1 May 19 2017

	v1.1.0: Mar 21 2017

	v1.0.7 Mar 20 2017

	v1.0.6 Jan 30 2017

	v1.0.5 Nov 18 2016

	v1.0.4 Nov 14 2016

	v1.0.3: Oct 28 2016

	v1.0.2: Sep 23 2016

	v1.0.1: Sep 21 2016

	v1.0.0: Jul 26 2016

	v0.9.2: Jan 20 2016

	v0.9.1: Nov 3 2015

	v0.9.0: Oct 28 2015

	v0.8.5: Nov 3 2015

	v0.8.4: Aug 26 2015

	v0.8.3: Aug 24 2015

	v0.8.2: Jul 6 2015

	v0.8.1: Apr 7 2015

	v0.8.0: Mar 5 2015

	v0.7.1: Jun 18 2014

	v0.7.0: Apr 04 2014

	v0.6.2: Mar 18 2013

	v0.6.1: Nov 28 2012

	v0.6.0: Nov 26 2012

	v0.5.1: Aug 06 2012

	v0.5.0: Jul 30 2012

	v0.4.4: Jul 24 2012

	v0.4.3: Jun 22 2012

	v0.4.2: Jun 20 2012

	v0.4.1: Jun 19 2012

	v0.4.0: May 1 2012

	v0.3.1: Mar 15 2012

	v0.3.0: Mar 13 2012

	v0.2.1: Feb 24 2012

	v0.2.0: Feb 15 2012

	v0.1.3: Jan 19 2012

	v0.1.2: Jan 07 2012

	v0.1.1: Dec 28 2011

	v0.1.0: Dec 21 2011

	Security

	Documentation TODOs

Contributors

Dropwizard wouldn’t exist without the hard work contributed by numerous individuals.

Many, many thanks to:

	Aaron Ingram [https://github.com/aingram]

	Adam Jordens [https://github.com/ajordens]

	Adam Marcus [https://github.com/marcua]

	afrin216 [https://github.com/afrin216]

	aharin [https://github.com/aharin]

	Aidan [https://github.com/mcgin]

	akumlehn [https://github.com/akumlehn]

	Al Scott [https://github.com/scottaj]

	Alex Ausch [https://github.com/aausch]

	Alex Butler [https://github.com/alexheretic]

	Alex Heneveld [https://github.com/ahgittin]

	Alex Katlein [https://github.com/vemilyus]

	Alexander von Renteln [https://github.com/herrphon]

	Alice Chen [https://github.com/chena]

	Anand Mohan [https://github.com/anandagarwaal]

	Anders Hedström [https://github.com/andershedstrom]

	Anders Jansson [https://github.com/aaanders]

	Andreas Petersson [https://github.com/apetersson]

	Andreas Stührk [https://github.com/Trundle]

	Andrei Savu [https://github.com/andreisavu]

	Andrew Clay Shafer [https://github.com/littleidea]

	AnDyXX [https://github.com/AnDyXX]

	anikiej [https://github.com/anikiej]

	Anna Goncharova [https://github.com/agoncharova]

	Antanas Končius [https://github.com/akoncius]

	Anthony Milbourne [https://github.com/ant3]

	Anthony Wat [https://github.com/acwwat]

	Arien Kock [https://github.com/arienkock]

	Armando Singer [https://github.com/asinger]

	Artem Prigoda [https://github.com/arteam]

	arunh [https://github.com/arunh]

	Athou [https://github.com/Athou]

	Bartek Szymański [https://github.com/draakhan]

	Basil James Whitehouse III [https://github.com/basil3whitehouse]

	Ben Bader [https://github.com/benjamin-bader]

	Ben Ripkens [https://github.com/bripkens]

	Ben Scholl [https://github.com/BenScholl]

	Ben Smith [https://github.com/thesmith]

	Benjamin Bentmann [https://github.com/bentmann]

	Bo Gotthardt [https://github.com/Lugribossk]

	Boyd Meier [https://github.com/bwmeier]

	Brandon Beck [https://github.com/bbeck]

	Brett Hoerner [https://github.com/bretthoerner]

	Børge Nese [https://github.com/bnese]

	Brian Demers [https://github.com/bdemers]

	Brian McCallister [https://github.com/brianm]

	Brian O’Neill [https://github.com/boneill42]

	Brian Vosburgh [https://github.com/brian-vosburgh]

	Brock Mills [https://github.com/stringy05]

	Bruce Ritchie [https://github.com/Omega1]

	Bryan Burkholder [https://github.com/bryanlb]

	Burak Dede [https://github.com/burakdede]

	BusComp [https://github.com/BusComp]

	Cagatay Kavukcuoglu [https://github.com/tinkerware]

	Camille Fournier [https://github.com/skamille]

	Carl Lerche [https://github.com/carllerche]

	Carlo Barbara [https://github.com/carlo-rtr]

	Carter Kozak [https://github.com/cakofony]

	Cemalettin Koc [https://github.com/cemo]

	Chad Selph [https://github.com/chadselph]

	Charlie Greenbacker [https://github.com/charlieg]

	Charlie La Mothe [https://github.com/clamothe]

	cheddar [https://github.com/cheddar]

	Chen Wang [https://github.com/cwang]

	Chris Micali [https://github.com/cmicali]

	Chris Pimlott [https://github.com/pimlottc]

	Chris Tierney [https://github.com/BCctierney]

	Christoffer Eide [https://github.com/eiden]

	Christoph Kutzinski [https://github.com/kutzi]

	Christopher Currie [https://github.com/christophercurrie]

	Christopher Gray [https://github.com/chrisgray]

	Christopher Holmes [https://github.com/chrisholmes]

	Coda Hale [https://github.com/codahale]

	Collin Van Dyck [https://github.com/collinvandyck]

	Csaba Palfi [https://github.com/csabapalfi]

	Dale Wijnand [https://github.com/dwijnand]

	Damian Pawlowski [https://github.com/profes]

	Dan Everton [https://github.com/deverton]

	dan mcweeney [https://github.com/mcdan]

	Dang Nguyen Anh Khoa [https://github.com/wakandan]

	Daniel Correia [https://github.com/danielbcorreia]

	Daniel Temme [https://github.com/dmt]

	Daniel White [https://github.com/lightswitch05]

	Darren Yin [https://github.com/dareonion]

	David Ehrmann [https://github.com/ehrmann]

	David Harris [https://github.com/toadzky]

	David Illsley [https://github.com/davidillsley]

	David Martin [https://github.com/dmartinpro]

	David Morgantini [https://github.com/dmorgantini]

	David Stendardi [https://github.com/dstendardi]

	Dennis Hoersch [https://github.com/dhs3000]

	Denny Abraham Cheriyan [https://github.com/dennyac]

	Derek Cicerone [https://github.com/derekcicerone]

	Derek Stainer [https://github.com/dstainer]

	Devin Breen [https://github.com/ometa]

	Devin Smith [https://github.com/devinrsmith]

	Dheerendra Rathor [https://github.com/DheerendraRathor]

	Dietrich Featherston [https://github.com/d2fn]

	Dimitris Zavaliadis [https://github.com/dimzava]

	Dmitry Minkovsky [https://github.com/dminkovsky]

	Dmitry Ustalov [https://github.com/dustalov]

	dom farr [https://github.com/dominicfarr]

	Dominic Tootell [https://github.com/tootedom]

	Dominik Wagenknecht [https://github.com/LeDominik]

	douzzi [https://github.com/douzzi]

	Drew Stephens [https://github.com/dinomite]

	Dylan Scott [https://github.com/dylanscott]

	eepstein [https://github.com/eepstein]

	Ellis Pritchard [https://github.com/ellispritchard]

	Emeka Mosanya [https://github.com/emeka]

	Erik van Oosten [https://github.com/erikvanoosten]

	Evan Jones [https://github.com/evanj]

	Evan Meagher [https://github.com/evnm]

	Ezra Epstein [https://github.com/eepstein]

	Fábio Franco Uechi [https://github.com/fabito]

	Felix [https://github.com/fexbraun]

	Flemming Frandsen [https://github.com/dren-dk]

	Florian Hirsch [https://github.com/lefloh]

	florinn [https://github.com/florinn]

	Francisco Rojas [https://github.com/frojasg]

	Fred Deschenes [https://github.com/FredDeschenes]

	Fredrik Sundberg [https://github.com/KingBuzzer]

	Friso Vrolijken [https://github.com/vrolijken]

	Frode Nerbråten [https://github.com/froden]

	Gabe Henkes [https://github.com/ghenkes]

	Gary Dusbabek [https://github.com/gdusbabek]

	Glenn McAllister [https://github.com/glennmcallister]

	Graham O’Regan [https://github.com/grahamoregan]

	Greg Bowyer [https://github.com/GregBowyer]

	Grzegorz Rożniecki [https://github.com/Xaerxess]

	Guillaume Simard [https://github.com/GuiSim]

	Gunnar Ahlberg [https://github.com/gunnarahlberg]

	Henrik Stråth [https://github.com/minisu]

	Håkan Jonson [https://github.com/hawkan]

	Hrvoje Slaviček [https://github.com/slavus]

	Hugo Gonçalves [https://github.com/hugogoncalves]

	Ian Eure [https://github.com/ieure]

	Ian Ferguson [https://github.com/ianferguson]

	Ian White [https://github.com/eonwhite]

	Ilias Bartolini [https://github.com/iliasbartolini]

	ipropper [https://github.com/ipropper]

	islasjuanp [https://github.com/islasjuanp]

	Jacek Jackowiak [https://github.com/airborn]

	Jake Swenson [https://github.com/jakeswenson]

	James Morris [https://github.com/RawToast]

	James Ward [https://github.com/jamesward]

	Jamie Furnaghan [https://github.com/reines]

	Jan Galinski [https://github.com/jangalinski]

	Jan Olaf Krems [https://github.com/jkrems]

	Jan-Terje Sørensen [https://github.com/jansoren]

	Jared Stehler [https://github.com/jaredstehler-cengage]

	Jason Clawson [https://github.com/jclawson]

	Jason Dunkelberger [https://github.com/dirkraft]

	Jason Toffaletti [https://github.com/toffaletti]

	Javier Campanini [https://github.com/jmcampanini]

	Jeff Klukas [https://github.com/jklukas]

	Jelmer ter Wal [https://github.com/jelmerterwal]

	Jerry-Carter [https://github.com/Jerry-Carter]

	Jesse Hodges [https://github.com/gjesse]

	Jilles Oldenbeuving [https://github.com/ojilles]

	Jochen Schalanda [https://github.com/joschi]

	Joe Lauer [https://github.com/jjlauer]

	Joe Schmetzer [https://github.com/tumbarumba]

	Johan Wirde (@jwirde) [https://github.com/wirde]

	Jon Radon [https://github.com/JonMR]

	Jonathan Haber [https://github.com/jhaber]

	Jonathan Halterman [https://github.com/jhalterman]

	Jonathan Monette [https://github.com/jmoney8080]

	Jonathan Ruckwood [https://github.com/jon-ruckwood]

	Jonathan Welzel [https://github.com/jnwelzel]

	Jordan Zimmerman [https://github.com/Randgalt]

	Joshua Spiewak [https://github.com/jspiewak]

	Jérémie Panzer [https://github.com/Athou]

	Julien [https://github.com/neurodesign]

	Justin Miller [https://github.com/justinrmiller]

	Justin Plock [https://github.com/jplock]

	Kashyap Paidimarri [https://github.com/kashyapp]

	Kerry Kimbrough [https://github.com/kerrykimbrough]

	Kilemensi [https://github.com/kilemensi]

	Kirill Vlasov [https://github.com/kirill-vlasov]

	Konstantin Yegupov [https://github.com/KonstantinYegupov]

	Kristian Klette [https://github.com/klette]

	Krzysztof Mejka [https://github.com/kmejka]

	kschjeld [https://github.com/kschjeld]

	LeekAnarchism [https://github.com/LeekAnarchism]

	lehcim [https://github.com/lehcim]

	Lior Bar-On [https://github.com/baronlior]

	Lucas [https://github.com/derlucas]

	Lunfu Zhong [https://github.com/zhongl]

	maffe [https://github.com/maffe]

	Magnus Reftel [https://github.com/reftel]

	Maher Abuthraa [https://github.com/mabuthraa]

	Malte S. Stretz [https://github.com/mss]

	Manabu Matsuzaki [https://github.com/matsumana]

	Manuel Hegner [https://github.com/manuel-hegner]

	Marcin Biegan [https://github.com/mabn]

	Marcus Höjvall [https://github.com/softarn]

	Marius Volkhart [https://github.com/MariusVolkhart]

	Mark Elliot [https://github.com/markelliot]

	Mark Reddy [https://github.com/markreddy]

	Mark Symons [https://github.com/msymons]

	Mark Wolfe [https://github.com/wolfeidau]

	markez92 [https://github.com/markez92]

	Martin W. Kirst [https://github.com/nitram509]

	Matt Brown [https://github.com/mattnworb]

	Matt Carrier [https://github.com/mcarrierastonish]

	Matt Hurne [https://github.com/mhurne]

	Matt Nelson [https://github.com/mattnelson]

	Matt Veitas [https://github.com/mveitas]

	Matt Whipple [https://github.com/mwhipple]

	Matthew Clarke [https://github.com/mclarke47]

	Matthew Dolan [https://github.com/MatthewDolan]

	Max Wenzin [https://github.com/betrcode]

	Maximilien Marie [https://github.com/akraxx]

	Michael Chaten [https://github.com/chaten]

	Michael Fairley [https://github.com/michaelfairley]

	Michael McCarthy [https://github.com/mikeycmccarthy]

	Michael Rice [https://github.com/mrice]

	Michael Silvanovich [https://github.com/Silvmike]

	Michal Rutkowski [https://github.com/velocipedist]

	Michel Decima [https://github.com/lehcim]

	MikaelAmborn [https://github.com/MikaelAmborn]

	Mike Miller [https://github.com/mikemil]

	Mikhail Gromov [https://github.com/mgtriffid]

	mnrasul [https://github.com/mnrasul]

	Moritz Kammerer [https://github.com/phxql]

	Mårten Gustafson [https://github.com/chids]

	Nasir [https://github.com/mnrasul]

	natnan [https://github.com/natnan]

	Nick Babcock [https://github.com/nickbabcock]

	Nick Smith [https://github.com/clickthisnick]

	Nick Telford [https://github.com/nicktelford]

	Nikhil Bafna [https://github.com/zodvik]

	Nisarg Shah [https://github.com/nisargshah95]

	Oddmar Sandvik [https://github.com/oddmar]

	Oliver B. Fischer [https://github.com/obfischer]

	Olivier Abdesselam [https://github.com/yazgoo]

	Olivier Grégoire [https://github.com/ogregoire]

	Ori Schwartz [https://github.com/orischwartz]

	oscarnalin [https://github.com/oscarnalin]

	Otto Jongerius [https://github.com/ojongerius]

	Owen Jacobson [https://github.com/ojacobson]

	pandaadb [https://github.com/pandaadb]

	Patrick Stegmann [https://github.com/wonderb0lt]

	Patryk Najda [https://github.com/patrox]

	Paul Samsotha [https://github.com/psamsotha]

	Paul Tomlin [https://github.com/ptomli]

	Philip K. Warren [https://github.com/pkwarren]

	Philip Potter [https://github.com/philandstuff]

	pkokush [https://github.com/pavelkokush]

	Punyashloka Biswal [https://github.com/punya]

	Qinfeng Chen [https://github.com/qinfchen]

	Quoc-Viet Nguyen [https://github.com/nqv]

	Rachel Normand [https://github.com/rnewstead1]

	Radoslav Petrov [https://github.com/zloster]

	rayokota [https://github.com/rayokota]

	Rüdiger zu Dohna [https://github.com/t1]

	Richard Kettelerij [https://github.com/rkettelerij]

	Richard Nyström [https://github.com/ricn]

	Rémi Alvergnat [https://github.com/Toilal]

	Robert Barbey [https://github.com/rbarbey]

	Ryan Berdeen [https://github.com/also]

	Ryan Kennedy [https://github.com/ryankennedy]

	Ryan Warren [https://github.com/rwwarren]

	saadmufti [https://github.com/saadmufti]

	Sam Perman [https://github.com/samperman]

	Sam Quigley [https://github.com/emerose]

	Scott Askew [https://github.com/scottfromsf]

	Scott D. [https://github.com/isaki-x]

	Sean Scanlon [https://github.com/sps]

	shartte [https://github.com/shartte]

	Shawn Smith [https://github.com/shawnsmith]

	Simon Collins [https://github.com/simoncollins]

	smolloy [https://github.com/smolloy]

	Sourav Mitra [https://github.com/souravmitra]

	Stan Svec [https://github.com/StanSvec]

	Stephen Huenneke [https://github.com/skastel]

	Steve Agalloco [https://github.com/stve]

	Steve Hill [https://github.com/sghill]

	Stevo Slavić [https://github.com/sslavic]

	Stuart Gunter [https://github.com/stuartgunter]

	Szymon Pacanowski [https://github.com/spacanowski]

	Tatu Saloranta [https://github.com/cowtowncoder]

	Ted Nyman [https://github.com/tnm]

	Thiago Moretto [https://github.com/thiagomoretto]

	Thomas Darimont [https://github.com/thomasdarimont]

	Tim Bart [https://github.com/pims]

	Tim Bartley [https://github.com/tbartley]

	Tom Akehurst [https://github.com/tomakehurst]

	Tom Crayford [https://github.com/tcrayford]

	Tom Lee [https://github.com/thomaslee]

	Tom Morris [https://github.com/tommorris]

	Tom Shen [https://github.com/tomshen]

	Tony Gaetani [https://github.com/tonygaetani]

	Trevor Mack [https://github.com/tmack8001]

	Tristan Burch [https://github.com/tburch]

	Tyrone Cutajar [https://github.com/tjcutajar]

	Vadim Spivak [https://github.com/vadims]

	vanvlack [https://github.com/vanvlack]

	Varun Loiwal [https://github.com/varunl]

	Vasyl Vavrychuk [https://github.com/vvavrychuk]

	Victor Noël [https://github.com/victornoel]

	Vitor Reis [https://github.com/vitorreis]

	Vladimir Ladynev [https://github.com/v-ladynev]

	Vojtěch Vondra [https://github.com/vvondra]

	vzx [https://github.com/vzx]

	Wank Sinatra [https://github.com/ieure]

	William Herbert [https://github.com/WilliamHerbert]

	William Palmer [https://github.com/willp-bl]

	Xavier Shay [https://github.com/xaviershay]

	Xiaodong Xie [https://github.com/xiaodong-xie]

	Yiwei Gao [https://github.com/yiweig]

	Yun Zhi Lin [https://github.com/yunspace]

	Yurii Savka [https://github.com/urisavka]

	zebra-kangaroo [https://github.com/zebra-kangaroo]

Sponsors

Dropwizard is generously supported by some companies with licenses and free accounts for their products.

JetBrains

[image: ../_images/jetbrains.png]
JetBrains [https://www.jetbrains.com/] supports our open source project by sponsoring some All Products Packs [https://www.jetbrains.com/products.html] within their Free Open Source License [https://www.jetbrains.com/buy/opensource/] program.

Frequently Asked Questions

	What’s a Dropwizard?

	A character in a K.C. Green web comic [http://gunshowcomic.com/316].

	How is Dropwizard licensed?

	It’s licensed under the Apache License v2 [http://www.apache.org/licenses/LICENSE-2.0.html].

	How can I commit to Dropwizard?

	Go to the GitHub project [https://github.com/dropwizard/dropwizard], fork it, and submit a pull request. We prefer small, single-purpose
pull requests over large, multi-purpose ones. We reserve the right to turn down any proposed
changes, but in general we’re delighted when people want to make our projects better!

Release Notes

v1.3.5: Jun 25, 2018

	Upgrade to Jetty 9.4.11.v20180605 to address various security issues [http://dev.eclipse.org/mhonarc/lists/jetty-announce/msg00123.html]

v1.2.8: Jun 25, 2018

	Upgrade to Jetty 9.4.11.v20180605 to address various security issues [http://dev.eclipse.org/mhonarc/lists/jetty-announce/msg00123.html]

v1.1.8: Jun 25, 2018

	Upgrade to Jetty 9.4.11.v20180605 to address various security issues [http://dev.eclipse.org/mhonarc/lists/jetty-announce/msg00123.html]

v1.3.4: Jun 14, 2018

	Upgrade to Jackson 2.9.6 to fix CVE-2018-12022 and CVE-2018-12023 (#2392 [https://github.com/dropwizard/dropwizard/issues/2392], #2393 [https://github.com/dropwizard/dropwizard/pull/2393])

	Upgrade to Liquibase 3.6.1 (#2385 [https://github.com/dropwizard/dropwizard/issues/2385], #2386 [https://github.com/dropwizard/dropwizard/pull/2386])

v1.2.7: Jun 14, 2018

	Upgrade to Jackson 2.9.6 to fix CVE-2018-12022 and CVE-2018-12023 (#2392 [https://github.com/dropwizard/dropwizard/issues/2392], #2393 [https://github.com/dropwizard/dropwizard/pull/2393])

v1.3.3: Jun 6, 2018

	Fix Jersey attempting to resolve auth filter fields #2324 [https://github.com/dropwizard/dropwizard/pull/2324]

	Upgrade to JUnit5 5.2.0 #2347 [https://github.com/dropwizard/dropwizard/pull/2347]

	Upgrade to Jdbi3 3.2.1 #2369 [https://github.com/dropwizard/dropwizard/pull/2369]

	Upgrade Liquibase from 3.5.5 to 3.6.0 #2325 [https://github.com/dropwizard/dropwizard/pull/2325]

v1.3.2: May 11, 2018

	Upgrade Jetty to 9.4.10.v20180503 #2346 [https://github.com/dropwizard/dropwizard/pull/2346]

	Add possibility to disable logging bootstrap for ResourceTestRule #2333 [https://github.com/dropwizard/dropwizard/pull/2333]

v1.2.6: May 11, 2018

	Upgrade Jetty to 9.4.10.v20180503 #2346 [https://github.com/dropwizard/dropwizard/pull/2346]

	Add possibility to disable logging bootstrap for ResourceTestRule #2333 [https://github.com/dropwizard/dropwizard/pull/2333]

v1.3.1: Apr 4, 2018

	Upgrade to Jackson 2.9.5 (CVE-2018-7489 [https://nvd.nist.gov/vuln/detail/CVE-2018-7489])

v1.2.5: Apr 4, 2018

	Upgrade to Jackson 2.9.5 (CVE-2018-7489 [https://nvd.nist.gov/vuln/detail/CVE-2018-7489])

v1.3.0: Mar 14, 2018

	Add “dropwizard-jdbi3” module #2243 [https://github.com/dropwizard/dropwizard/pull/2243], #2247 [https://github.com/dropwizard/dropwizard/pull/2247]

	Add Dropwizard testing module for JUnit 5 #2166 [https://github.com/dropwizard/dropwizard/pull/2166]

	Support for building and running Dropwizard on JDK9 #2197 [https://github.com/dropwizard/dropwizard/pull/2197]

	Support for running Dropwizard with native SSL via Conscrypt #2230 [https://github.com/dropwizard/dropwizard/pull/2230]

	Add support for JSON logs in Dropwizard #2232 [https://github.com/dropwizard/dropwizard/pull/2232]

	Add a TCP and UDP log appenders to Dropwizard #2291 [https://github.com/dropwizard/dropwizard/pull/2291]

	Add support for providing a custom logging layout during logging bootstrap #2260 [https://github.com/dropwizard/dropwizard/pull/2260]

	Add context path to logged endpoints #2254 [https://github.com/dropwizard/dropwizard/pull/2254]

	Support multiple extensions for views (breaking change) #2213 [https://github.com/dropwizard/dropwizard/pull/2213]

	Enable auto escaping of strings in Freemarker templates #2251 [https://github.com/dropwizard/dropwizard/pull/2251]

	Allow dynamic constraint validation messages #2246 [https://github.com/dropwizard/dropwizard/pull/2246]

	Add the @SelfValidation annotation as a powerful alternative to @ValidationMethod #2150 [https://github.com/dropwizard/dropwizard/pull/2150]

	Set a minimal duration for DatasourceFactory.maxWaitForConnection() #2130 [https://github.com/dropwizard/dropwizard/pull/2130]

	Migrate deprecated classes from commons-lang to commons-text #2208 [https://github.com/dropwizard/dropwizard/pull/2208]

	Support for setting the immediateFlush option for file logging #2193 [https://github.com/dropwizard/dropwizard/pull/2193]

	Use InstrumentedQueuedThreadPool for admin endpoint #2186 [https://github.com/dropwizard/dropwizard/pull/2186]

	Add support for configuring ServiceUnavailableRetryStrategy for HTTP clients #2185 [https://github.com/dropwizard/dropwizard/pull/2185]

	Add possibility to configure Jetty’s minRequestDataRate #2184 [https://github.com/dropwizard/dropwizard/pull/2184]

	Add exclusive mode to @MinDuration and @MaxDuration annotations #2167 [https://github.com/dropwizard/dropwizard/pull/2167]

	Strip the Content-Length header after decompressing HTTP requests #2271 [https://github.com/dropwizard/dropwizard/pull/2271]

	Add support for providing a custom layout during logging bootstrap #2260 [https://github.com/dropwizard/dropwizard/pull/2260]

	Add support for PATCH request to Jersey test client #2288 [https://github.com/dropwizard/dropwizard/pull/2288]

	Add configuration option to EventJsonLayoutBaseFactory to flatten MDC #2293 [https://github.com/dropwizard/dropwizard/pull/2293]

	Allow to use custom security provider in HTTP client #2299 [https://github.com/dropwizard/dropwizard/pull/2299]

	Make ignoreExceptionOnPreLoad on PoolProperties configurable #2300 [https://github.com/dropwizard/dropwizard/pull/2300]

	Allow lazy initialization of resources in ResourceTestRule #2304 [https://github.com/dropwizard/dropwizard/pull/2304]

	Make sure Jersey test client uses Dropwizard’s ObjectMapper #2277 [https://github.com/dropwizard/dropwizard/pull/2277]

	Allow customizing Hibernate Configuration in DAOTest #2301 [https://github.com/dropwizard/dropwizard/pull/2301]

	Upgrade to Apache Commons Lang3 3.7

	Upgrade to Apache Commons Text 1.2

	Upgrade to Apache HttpClient 4.5.5

	Upgrade to Apache Tomcat JDBC 9.0.5

	Upgrade to Argparse4j 0.8.1

	Upgrade to AssertJ 3.9.1

	Upgrade to Dropwizard Metrics 4.0.2

	Upgrade to Error Prone 2.2.0

	Upgrade to Guava 24.0-jre

	Upgrade to Hibernate 5.2.15.Final

	Upgrade to Jackson 2.9.4

	Upgrade Jadira to 7.0.0-rc1 #2272 [https://github.com/dropwizard/dropwizard/pull/2272]

	Upgrade to Jdbi 3.1.0 #2289 [https://github.com/dropwizard/dropwizard/pull/2289]

	Upgrade to JUnit 5.0.3

	Upgrade to Mockito 2.15.0

	Upgrade to NullAway 0.3.2

v1.2.4: Feb 23, 2018

	Upgrade Jackson to 2.9.4 in 1.2.* to address a CVE #2269 [https://github.com/dropwizard/dropwizard/pull/2269]

v1.1.7: Feb 23, 2018

	Upgrade to Jackson 2.8.11 to address CVE [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17485] #2270 [https://github.com/dropwizard/dropwizard/pull/2270]

v1.2.3: Jan 24, 2018

	Enable auto escaping of strings in Freemarker templates #2251 [https://github.com/dropwizard/dropwizard/pull/2251]

v1.2.2: Nov 27, 2017

	Don’t shut down asynchronous executor in Jersey #2221

	Add possibility to possibility to extend DropwizardApacheConnector #2220

v1.2.1: Nov 22, 2017

	Correctly set up SO_LINGER for the HTTP connector #2176 [https://github.com/dropwizard/dropwizard/pull/2176]

	Support fromString in FuzzyEnumParamConverter #2161 [https://github.com/dropwizard/dropwizard/pull/2161]

	Upgrade to Hibernate 5.2.12.Final to address HHH-11996 [https://hibernate.atlassian.net/browse/HHH-11996], #2206 [https://github.com/dropwizard/dropwizard/issues/2206]

	Upgrade to Freemaker 2.3.27-incubating

v1.1.6: Nov 2, 2017

	Support fromString in FuzzyEnumParamConverter #2161 [https://github.com/dropwizard/dropwizard/pull/2161]

v1.1.5: Oct 17, 2017

	Correctly set up SO_LINGER for the HTTP connector #2176 [https://github.com/dropwizard/dropwizard/pull/2176]

v1.2.0: Oct 6 2017

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/25?closed=1]

	Support configuring FileAppender#bufferSize #1951 [https://github.com/dropwizard/dropwizard/pull/1951]

	Improve error handling of @FormParam resources #1982 [https://github.com/dropwizard/dropwizard/pull/1982]

	Add JDBC interceptors through configuration #2030 [https://github.com/dropwizard/dropwizard/pull/2030]

	Support Dropwizard applications without logback #1900 [https://github.com/dropwizard/dropwizard/pull/1900]

	Replace deprecated SizeAndTimeBasedFNATP with SizeAndTimeBasedRollingPolicy #2010 [https://github.com/dropwizard/dropwizard/pull/2010]

	Decrease allowable tomcat jdbc validation interval to 50ms #2051 [https://github.com/dropwizard/dropwizard/pull/2051]

	Add support for setting several cipher suites for HTTP/2 #2119 [https://github.com/dropwizard/dropwizard/pull/2119]

	Remove Dropwizard’s Jackson dependency on Logback #2112 [https://github.com/dropwizard/dropwizard/pull/2112]

	Handle badly formed “Accept-Language” headers #2103 [https://github.com/dropwizard/dropwizard/pull/2103]

	Use LoadingCache in CachingAuthorizer #2096 [https://github.com/dropwizard/dropwizard/pull/2096]

	Client NTLM Authentication #2091 [https://github.com/dropwizard/dropwizard/pull/2091]

	Add optional Jersey filters #1948 [https://github.com/dropwizard/dropwizard/pull/1948]

	Upgrade to Apache commons-lang3 3.6

	Upgrade to AssertJ 3.8.0

	Upgrade to classmate 1.3.4

	Upgrade to Guava 23.1

	Upgrade to H2 1.4.196

	Upgrade to Hibernate 5.2.11.Final

	Upgrade to Hibernate Validator 5.4.1.Final

	Upgrade to HSQLDB 2.4.0

	Upgrade to Jackson 2.9.1

	Upgrade to Jetty 9.4.7.v20170914

	Upgrade to JMH 1.19

	Upgrade to Joda-Time 2.9.9

	Upgrade to Logback 1.2.3

	Upgrade to Metrics 3.2.5

	Upgrade to Mockito 2.10.0

	Upgrade to Mustache.java 0.9.5

	Upgrade to Objenesis 2.6

	Upgrade to SLF4J 1.7.25

	Upgrade to tomcat-jdbc 8.5.23

v1.1.4: Aug 24 2017

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/31?closed=1]

	Upgrade to Jackson 2.8.10 #2120 [https://github.com/dropwizard/dropwizard/issues/2120]

v1.1.3: Jul 31 2017

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/30?closed=1]

	Handle badly formed ‘Accept-Language’ headers #2097 [https://github.com/dropwizard/dropwizard/issues/2097]

	Upgrade to Jetty 9.4.6.v20170531 to address CVE-2017-9735 [https://nvd.nist.gov/vuln/detail/CVE-2017-9735] #2113 [https://github.com/dropwizard/dropwizard/issues/2113]

v1.1.2 June 27 2017

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/28?closed=1]

	Updated Jackson to 2.8.9. Fixes a security vulnerability [https://github.com/FasterXML/jackson-databind/issues/1599] with default typing #2086 [https://github.com/dropwizard/dropwizard/issues/2086]

	Use the correct JsonFactory in JSON configuration parsing #2046 [https://github.com/dropwizard/dropwizard/issues/2046]

	Support of extending of DBIFactory #2067 [https://github.com/dropwizard/dropwizard/issues/2067]

	Add time zone to Java 8 datetime mappers #2069 [https://github.com/dropwizard/dropwizard/issues/2069]

v1.0.8 June 27 2017

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/29?closed=1]

	Updated Jackson to 2.7.9.1. Fixes a security vulnerability [https://github.com/FasterXML/jackson-databind/issues/1599] with default typing #2087 [https://github.com/dropwizard/dropwizard/issues/2087]

v1.1.1 May 19 2017

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/27?closed=1]

	Set the console logging context after a reset #1973 [https://github.com/dropwizard/dropwizard/pull/1973]

	Set logging context for file appenders before setting the buffer size #1975 [https://github.com/dropwizard/dropwizard/pull/1975]

	Remove javax.el from jersey-bean-validation #1976 [https://github.com/dropwizard/dropwizard/pull/1976]

	Exclude duplicated JTA 1.1 from dropwizard-hibernate dependencies #1977 [https://github.com/dropwizard/dropwizard/pull/1977]

	Add missing @UnwrapValidatedValue annotations #1993 [https://github.com/dropwizard/dropwizard/pull/1993]

	Fix HttpSessionListener.sessionDestroyed is not being called #2032 [https://github.com/dropwizard/dropwizard/pull/2032]

	Add flag to make ThreadNameFilter optional #2014 [https://github.com/dropwizard/dropwizard/pull/2014]

v1.1.0: Mar 21 2017

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/15?closed=1]

	Upgraded to Hibernate ORM 5.2.7, introducing a series of deprecations and API changes in preparation for Hibernate ORM 6 #1871 [https://github.com/dropwizard/dropwizard/pull/1871]

	Add runtime certificate reload via admin task #1799 [https://github.com/dropwizard/dropwizard/pull/1799]

	List available tasks lexically via admin task #1939 [https://github.com/dropwizard/dropwizard/pull/1939]

	Add support for optional resource protection #1931 [https://github.com/dropwizard/dropwizard/pull/1931]

	Invalid enum request parameters result in 400 response with possible choices #1734 [https://github.com/dropwizard/dropwizard/pull/1734]

	Enum request parameters are deserialized in the same fuzzy manner, as the request body #1734 [https://github.com/dropwizard/dropwizard/pull/1734]

	Request parameter name displayed in response to parse failure #1734 [https://github.com/dropwizard/dropwizard/pull/1734]

	Add DurationParam as a possible request parameter #1734 [https://github.com/dropwizard/dropwizard/pull/1734]

	Add SizeParam as a possible request parameter #1751 [https://github.com/dropwizard/dropwizard/pull/1751]

	Allow overriding of a default ExceptionMapper without re-registering all other defaults #1768 [https://github.com/dropwizard/dropwizard/pull/1768]

	Allow overriding of default JsonProvider #1788 [https://github.com/dropwizard/dropwizard/pull/1788]

	Finer-grain control of exception behaviour in view renderers #1820 [https://github.com/dropwizard/dropwizard/pull/1820]

	Default WebApplicationException handler preserves exception HTTP headers #1912 [https://github.com/dropwizard/dropwizard/pull/1912]

	JerseyClientBuilder can create rx-capable client #1721 [https://github.com/dropwizard/dropwizard/pull/1721]

	Configurable response for empty Optional return values #1784 [https://github.com/dropwizard/dropwizard/pull/1784]

	Add web test container agnostic way of invoking requests in ResourceTestRule #1778 [https://github.com/dropwizard/dropwizard/pull/1778]

	Remove OptionalValidatedValueUnwrapper #1583 [https://github.com/dropwizard/dropwizard/pull/1583]

	Allow constraints to be applied to type #1586 [https://github.com/dropwizard/dropwizard/pull/1586]

	Use LoadingCache in CachingAuthenticator #1615 [https://github.com/dropwizard/dropwizard/pull/1615]

	Switch cert and peer validation to false by default #1855 [https://github.com/dropwizard/dropwizard/pull/1855]

	Introduce CachingAuthorizer #1639 [https://github.com/dropwizard/dropwizard/pull/1639]

	Enhance logging of registered endpoints #1804 [https://github.com/dropwizard/dropwizard/pull/1804]

	Flush loggers on command exit instead of destroying logging #1947 [https://github.com/dropwizard/dropwizard/pull/1947]

	Add support for neverBlock on AsyncAppenders #1917 [https://github.com/dropwizard/dropwizard/pull/1917]

	Allow to disable caching of Mustache views #1289 [https://github.com/dropwizard/dropwizard/issues/1289]

	Add the httpCompliance option to the HTTP configuration #1825 [https://github.com/dropwizard/dropwizard/pull/1825]

	Add the blockingTimeout option to the HTTP configuration #1795 [https://github.com/dropwizard/dropwizard/pull/1795]

	Make GZipHandler sync-flush configurable #1685 [https://github.com/dropwizard/dropwizard/pull/1685]

	Add min and mins as valid Duration abbreviations #1833 [https://github.com/dropwizard/dropwizard/pull/1833]

	Register Jackson parameter-names modules #1908 [https://github.com/dropwizard/dropwizard/pull/1908]

	Native Jackson deserialization of enums when Jackson annotations are present #1909 [https://github.com/dropwizard/dropwizard/pull/1909]

	Add JsonConfigurationFactory for first-class support of the JSON configuration #1897 [https://github.com/dropwizard/dropwizard/pull/1897]

	Support disabled and enabled attributes for metrics #1957 [https://github.com/dropwizard/dropwizard/pull/1957]

	Support @UnitOfWork in sub-resources #1959 [https://github.com/dropwizard/dropwizard/pull/1959]

	Upgraded to Jackson 2.8.7

	Upgraded to Hibernate Validator 5.3.4.Final

	Upgraded to Hibernate ORM 5.2.8.Final

	Upgraded to Jetty 9.4.2.v20170220

	Upgraded to tomcat-jdbc 8.5.9

	Upgraded to Objenesis 2.5.1

	Upgraded to AssertJ 3.6.2

	Upgraded to classmate 1.3.3

	Upgraded to Metrics 3.2.2 #1970 [https://github.com/dropwizard/dropwizard/pull/1970]

	Upgraded to Mustache 0.9.4 #1766 [https://github.com/dropwizard/dropwizard/pull/1766]

	Upgraded to Mockito 2.7.12

	Upgraded to Liquibase 3.5.3

	Upgraded to Logback 1.2.1 #1918 [https://github.com/dropwizard/dropwizard/pull/1927]

	Upgraded to JDBI 2.78

	Upgraded to Jersey 2.25.1

	Upgraded to javassist 3.21.0-GA

	Upgraded to Guava 21.0

	Upgraded to SLF4J 1.7.24

	Upgraded to H2 1.4.193

	Upgraded to Joda-Time 2.9.7

	Upgraded to commons-lang3 3.5

	Upgraded to Apache HTTP Client 4.5.3

v1.0.7 Mar 20 2017

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/26?closed=1]

	Upgrade to Metrics 3.1.4 #1969 [https://github.com/dropwizard/dropwizard/pull/1969]

v1.0.6 Jan 30 2017

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/23?closed=1]

	Switch cert and peer validation to false by default #1855 [https://github.com/dropwizard/dropwizard/pull/1855]

	Add a JUnit rule for testing database interactions #1905 [https://github.com/dropwizard/dropwizard/pull/1905]

v1.0.5 Nov 18 2016

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/22?closed=1]

	Fix request logs with request parameter in layout pattern #1828 [https://github.com/dropwizard/dropwizard/pull/1828]

v1.0.4 Nov 14 2016

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/21?closed=1]

	Upgraded to Jersey 2.23.2 #1808 [https://github.com/dropwizard/dropwizard/pull/1808]

	Brought back support for request logging with logback-classic #1813 [https://github.com/dropwizard/dropwizard/pull/1813]

v1.0.3: Oct 28 2016

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/20?closed=1]

	Fix support maxFileSize and archivedFileCount #1660 [https://github.com/dropwizard/dropwizard/pull/1660]

	Upgraded to Jackson 2.7.8 #1755 [https://github.com/dropwizard/dropwizard/pull/1755]

	Upgraded to Mustache 0.9.4 #1766 [https://github.com/dropwizard/dropwizard/pull/1766]

	Prefer use of assertj’s java8 exception assertions #1753 [https://github.com/dropwizard/dropwizard/pull/1753]

v1.0.2: Sep 23 2016

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/19?closed=1]

	Fix absence of request logs in Dropwizard 1.0.1 #1737 [https://github.com/dropwizard/dropwizard/pull/1737]

v1.0.1: Sep 21 2016

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/17?closed=1]

	Allow use of custom HostnameVerifier on clients #1664 [https://github.com/dropwizard/dropwizard/pull/1664]

	Allow to configure failing on unknown properties in the Dropwizard configuration #1677 [https://github.com/dropwizard/dropwizard/pull/1677]

	Fix request attribute-related race condition in Logback request logging #1678 [https://github.com/dropwizard/dropwizard/pull/1678]

	Log Jetty initialized SSLContext not the Default #1698 [https://github.com/dropwizard/dropwizard/pull/1698]

	Fix NPE of non-resource sub-resource methods #1718 [https://github.com/dropwizard/dropwizard/pull/1718]

v1.0.0: Jul 26 2016

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/9?closed=1]

	Using Java 8 as baseline

	dropwizard-java8 bundle merged into mainline #1365 [https://github.com/dropwizard/dropwizard/issues/1365]

	HTTP/2 and server push support #1349 [https://github.com/dropwizard/dropwizard/issues/1349]

	dropwizard-spdy module is removed in favor of dropwizard-http2 #1330 [https://github.com/dropwizard/dropwizard/pull/1330]

	Switching to logback-access for HTTP request logging #1415 [https://github.com/dropwizard/dropwizard/pull/1415]

	Support for validating return values in JAX-RS resources #1251 [https://github.com/dropwizard/dropwizard/pull/1251]

	Consistent handling null entities in JAX-RS resources #1251 [https://github.com/dropwizard/dropwizard/pull/1251]

	Support for validating bean members in JAX-RS resources #1572 [https://github.com/dropwizard/dropwizard/pull/1572]

	Returning an HTTP 500 error for entities that can’t be serialized #1347 [https://github.com/dropwizard/dropwizard/pull/1347]

	Support serialisation of lazy loaded POJOs in Hibernate #1466 [https://github.com/dropwizard/dropwizard/pull/1466]

	Support fallback to the toString method during deserializing enum values from JSON #1340 [https://github.com/dropwizard/dropwizard/pull/1340]

	Support for setting default headers in Apache HTTP client #1354 [https://github.com/dropwizard/dropwizard/pull/1354]

	Printing help once on invalid command line arguments #1376 [https://github.com/dropwizard/dropwizard/pull/1376]

	Support for case insensitive and all single letter SizeUnit suffixes #1380 [https://github.com/dropwizard/dropwizard/pull/1380]

	Added a development profile to the build #1364 [https://github.com/dropwizard/dropwizard/issues/1364]

	All the default exception mappers in ResourceTestRule are registered by default #1387 [https://github.com/dropwizard/dropwizard/pull/1387]

	Allow DB minSize and initialSize to be zero for lazy connections #1517 [https://github.com/dropwizard/dropwizard/pull/1517]

	Ability to provide own RequestLogFactory #1290 [https://github.com/dropwizard/dropwizard/pull/1290]

	Support for authentication by polymorphic principals #1392 [https://github.com/dropwizard/dropwizard/pull/1392]

	Support for configuring Jetty’s inheritedChannel option #1410 [https://github.com/dropwizard/dropwizard/pull/1410]

	Support for using DropwizardAppRule at the suite level #1411 [https://github.com/dropwizard/dropwizard/pull/1411]

	Support for adding multiple MigrationBundles #1430 [https://github.com/dropwizard/dropwizard/pull/1430]

	Support for obtaining server context paths in the Application.run method #1503 [https://github.com/dropwizard/dropwizard/pull/1503]

	Support for unlimited log files for file appender #1549 [https://github.com/dropwizard/dropwizard/pull/1549]

	Support for log file names determined by logging policy #1561 [https://github.com/dropwizard/dropwizard/pull/1561]

	Default Graphite reporter port changed from 8080 to 2003 #1538 [https://github.com/dropwizard/dropwizard/pull/1538]

	Upgraded to Apache HTTP Client 4.5.2

	Upgraded to argparse4j 0.7.0

	Upgraded to Guava 19.0

	Upgraded to H2 1.4.192

	Upgraded to Hibernate 5.1.0 #1429 [https://github.com/dropwizard/dropwizard/pull/1429]

	Upgraded to Hibernate Validator 5.2.4.Final

	Upgraded to HSQLDB 2.3.4

	Upgraded to Jadira Usertype Core 5.0.0.GA

	Upgraded to Jackson 2.7.6

	Upgraded to JDBI 2.73 #1358 [https://github.com/dropwizard/dropwizard/pull/1358]

	Upgraded to Jersey 2.23.1

	Upgraded to Jetty 9.3.9.v20160517 #1330 [https://github.com/dropwizard/dropwizard/pull/1330]

	Upgraded to JMH 1.12

	Upgraded to Joda-Time 2.9.4

	Upgraded to Liquibase 3.5.1

	Upgraded to liquibase-slf4j 2.0.0

	Upgraded to Logback 1.1.7

	Upgraded to Mustache 0.9.2

	Upgraded to SLF4J 1.7.21

	Upgraded to tomcat-jdbc 8.5.3

	Upgraded to Objenesis 2.3

	Upgraded to AssertJ 3.4.1

	Upgraded to Mockito 2.0.54-beta

v0.9.2: Jan 20 2016

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/14?closed=1]

	Support @UnitOfWork annotation outside of Jersey resources #1361 [https://github.com/dropwizard/dropwizard/issues/1361]

v0.9.1: Nov 3 2015

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/13?closed=1]

	Add ConfigurationSourceProvider for reading resources from classpath #1314 [https://github.com/dropwizard/dropwizard/issues/1314]

	Add @UnwrapValidatedValue annotation to BaseReporterFactory.frequency #1308 [https://github.com/dropwizard/dropwizard/issues/1308], #1309 [https://github.com/dropwizard/dropwizard/issues/1309]

	Fix serialization of default configuration for DataSourceFactory by deprecating PooledDataSourceFactory#getHealthCheckValidationQuery() and PooledDataSourceFactory#getHealthCheckValidationTimeout() #1321 [https://github.com/dropwizard/dropwizard/issues/1321], #1322 [https://github.com/dropwizard/dropwizard/pull/1322]

	Treat null values in JAX-RS resource method parameters of type Optional<T> as absent value after conversion #1323 [https://github.com/dropwizard/dropwizard/pull/1323]

v0.9.0: Oct 28 2015

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/8?closed=1]

	Various documentation fixes and improvements

	New filter-based authorization & authentication #952 [https://github.com/dropwizard/dropwizard/pull/952], #1023 [https://github.com/dropwizard/dropwizard/pull/1023], #1114 [https://github.com/dropwizard/dropwizard/pull/1114], #1162 [https://github.com/dropwizard/dropwizard/pull/1162], #1241 [https://github.com/dropwizard/dropwizard/pull/1241]

	Fixed a security bug in CachingAuthenticator with caching results of failed authentication attempts #1082 [https://github.com/dropwizard/dropwizard/pull/1082]

	Correct handling misconfigured context paths in ServerFactory #785 [https://github.com/dropwizard/dropwizard/pull/785]

	Logging context paths during application startup #994 [https://github.com/dropwizard/dropwizard/pull/994], #1072 [https://github.com/dropwizard/dropwizard/pull/1072]

	Support for Jersey Bean Validation [https://jersey.github.io/documentation/latest/bean-validation.html] #842 [https://github.com/dropwizard/dropwizard/pull/842]

	Returning descriptive constraint violation messages #1039 [https://github.com/dropwizard/dropwizard/pull/1039],

	Trace logging of failed constraint violations #992 [https://github.com/dropwizard/dropwizard/pull/992]

	Returning correct HTTP status codes for constraint violations #993 [https://github.com/dropwizard/dropwizard/pull/993]

	Fixed possible XSS in constraint violations #892 [https://github.com/dropwizard/dropwizard/issues/892]

	Support for including caller data in appenders #995 [https://github.com/dropwizard/dropwizard/pull/995]

	Support for defining custom logging factories (e.g. native Logback) #996 [https://github.com/dropwizard/dropwizard/pull/996]

	Support for defining the maximum log file size in FileAppenderFactory. #1000 [https://github.com/dropwizard/dropwizard/pull/1000]

	Support for fixed window rolling policy in FileAppenderFactory #1218 [https://github.com/dropwizard/dropwizard/pull/1218]

	Support for individual logger appenders #1092 [https://github.com/dropwizard/dropwizard/pull/1092]

	Support for disabling logger additivity #1215 [https://github.com/dropwizard/dropwizard/pull/1215]

	Sorting endpoints in the application startup log #1002 [https://github.com/dropwizard/dropwizard/pull/1002]

	Dynamic DNS resolution in the Graphite metric reporter #1004 [https://github.com/dropwizard/dropwizard/pull/1004]

	Support for defining a custom MetricRegistry during bootstrap (e.g. with HdrHistogram) #1015 [https://github.com/dropwizard/dropwizard/pull/1015]

	Support for defining a custom ObjectMapper during bootstrap. #1112 [https://github.com/dropwizard/dropwizard/pull/1112]

	Added facility to plug-in custom DB connection pools (e.g. HikariCP) #1030 [https://github.com/dropwizard/dropwizard/pull/1030]

	Support for setting a custom DB pool connection validator #1113 [https://github.com/dropwizard/dropwizard/pull/1113]

	Support for enabling of removing abandoned DB pool connections #1264 [https://github.com/dropwizard/dropwizard/pull/1264]

	Support for credentials in a DB data source URL #1260 [https://github.com/dropwizard/dropwizard/pull/1260]

	Support for simultaneous work of several Hibernate bundles #1276 [https://github.com/dropwizard/dropwizard/pull/1276]

	HTTP(S) proxy support for Dropwizard HTTP client #657 [https://github.com/dropwizard/dropwizard/pull/657]

	Support external configuration of TLS properties for Dropwizard HTTP client #1224 [https://github.com/dropwizard/dropwizard/pull/1224]

	Support for not accepting GZIP-compressed responses in HTTP clients #1270 [https://github.com/dropwizard/dropwizard/pull/1270]

	Support for setting a custom redirect strategy in HTTP clients #1281 [https://github.com/dropwizard/dropwizard/pull/1281]

	Apache and Jersey clients are now managed by the application environment #1061 [https://github.com/dropwizard/dropwizard/pull/1061]

	Support for request-scoped configuration for Jersey client #939 [https://github.com/dropwizard/dropwizard/pull/939]

	Respecting Jackson feature for deserializing enums using toString #1104 [https://github.com/dropwizard/dropwizard/pull/1104]

	Support for passing explicit Configuration via test rules #1131 [https://github.com/dropwizard/dropwizard/pull/1131]

	On view template error, return a generic error page instead of template not found #1178 [https://github.com/dropwizard/dropwizard/pull/1178]

	In some cases an instance of Jersey HTTP client could be abruptly closed during the application lifetime #1232 [https://github.com/dropwizard/dropwizard/pull/1232]

	Improved build time build by running tests in parallel #1032 [https://github.com/dropwizard/dropwizard/pull/1032]

	Added JMH benchmarks #990 [https://github.com/dropwizard/dropwizard/pull/990]

	Allow customization of Hibernate SessionFactory #1182 [https://github.com/dropwizard/dropwizard/issue/1182]

	Removed javax.el-2.x in favour of javax.el-3.0

	Upgraded to argparse4j 0.6.0

	Upgrade to AssertJ 2.2.0

	Upgraded to JDBI 2.63.1

	Upgraded to Apache HTTP Client 4.5.1

	Upgraded to Dropwizard Metrics 3.1.2

	Upgraded to Freemarker 2.3.23

	Upgraded to H2 1.4.190

	Upgraded to Hibernate 4.3.11.Final

	Upgraded to Jackson 2.6.3

	Upgraded to Jadira Usertype Core 4.0.0.GA

	Upgraded to Jersey 2.22.1

	Upgraded to Jetty 9.2.13.v20150730

	Upgraded to Joda-Time 2.9

	Upgraded to JSR305 annotations 3.0.1

	Upgraded to Hibernate Validator 5.2.2.Final

	Upgraded to Jetty ALPN boot 7.1.3.v20150130

	Upgraded to Jetty SetUID support 1.0.3

	Upgraded to Liquibase 3.4.1

	Upgraded to Logback 1.1.3

	Upgraded to Metrics 3.1.2

	Upgraded to Mockito 1.10.19

	Upgraded to SLF4J 1.7.12

	Upgraded to commons-lang3 3.4

	Upgraded to tomcat-jdbc 8.0.28

v0.8.5: Nov 3 2015

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/12?closed=1]

	Treat null values in JAX-RS resource method parameters of type Optional<T> as absent value after conversion #1323 [https://github.com/dropwizard/dropwizard/pull/1323]

v0.8.4: Aug 26 2015

	Upgrade to Apache HTTP Client 4.5

	Upgrade to Jersey 2.21

	Fixed user-agent shadowing in Jersey HTTP Client #1198 [https://github.com/dropwizard/dropwizard/pull/1198]

v0.8.3: Aug 24 2015

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/11?closed=1]

	Fixed an issue with closing the HTTP client connection pool after a full GC #1160 [https://github.com/dropwizard/dropwizard/pull/1160]

v0.8.2: Jul 6 2015

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/10?closed=1]

	Support for request-scoped configuration for Jersey client #1137 [https://github.com/dropwizard/dropwizard/pull/1137]

	Upgraded to Jersey 2.19 #1143 [https://github.com/dropwizard/dropwizard/pull/1143]

v0.8.1: Apr 7 2015

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/7?closed=1]

	Fixed transaction committing lifecycle for @UnitOfWork (#850, #915)

	Fixed noisy Logback messages on startup (#902)

	Ability to use providers in TestRule, allows testing of auth & views (#513, #922)

	Custom ExceptionMapper not invoked when Hibernate rollback (#949)

	Support for setting a time bound on DBI and Hibernate health checks

	Default configuration for views

	Ensure that JerseyRequest scoped ClientConfig gets propagated to HttpUriRequest

	More example tests

	Fixed security issue where info is leaked during validation of unauthenticated resources(#768)

v0.8.0: Mar 5 2015

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/5?closed=1]

	Migrated dropwizard-spdy from NPN to ALPN

	Dropped support for deprecated SPDY/2 in dropwizard-spdy

	Upgrade to argparse4j 0.4.4

	Upgrade to commons-lang3 3.3.2

	Upgrade to Guava 18.0

	Upgrade to H2 1.4.185

	Upgrade to Hibernate 4.3.5.Final

	Upgrade to Hibernate Validator 5.1.3.Final

	Upgrade to Jackson 2.5.1

	Upgrade to JDBI 2.59

	Upgrade to Jersey 2.16

	Upgrade to Jetty 9.2.9.v20150224

	Upgrade to Joda-Time 2.7

	Upgrade to Liquibase 3.3.2

	Upgrade to Mustache 0.8.16

	Upgrade to SLF4J 1.7.10

	Upgrade to tomcat-jdbc 8.0.18

	Upgrade to JSR305 annotations 3.0.0

	Upgrade to Junit 4.12

	Upgrade to AssertJ 1.7.1

	Upgrade to Mockito 1.10.17

	Support for range headers

	Ability to use Apache client configuration for Jersey client

	Warning when maximum pool size and unbounded queues are combined

	Fixed connection leak in CloseableLiquibase

	Support ScheduledExecutorService with daemon thread

	Improved DropwizardAppRule

	Better connection pool metrics

	Removed final modifier from Application#run

	Fixed gzip encoding to support Jersey 2.x

	Configuration to toggle regex [in/ex]clusion for Metrics

	Configuration to disable default exception mappers

	Configuration support for disabling chunked encoding

	Documentation fixes and upgrades

v0.7.1: Jun 18 2014

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/6?closed=1]

	Added instrumentation to Task, using metrics annotations.

	Added ability to blacklist SSL cipher suites.

	Added @PATCH annotation for Jersey resource methods to indicate use of the HTTP PATCH method.

	Added support for configurable request retry behavior for HttpClientBuilder and JerseyClientBuilder.

	Added facility to get the admin HTTP port in DropwizardAppTestRule.

	Added ScanningHibernateBundle, which scans packages for entities, instead of requiring you to add them individually.

	Added facility to invalidate credentials from the CachingAuthenticator that match a specified Predicate.

	Added a CI build profile for JDK 8 to ensure that Dropwizard builds against the latest version of the JDK.

	Added --catalog and --schema options to Liquibase.

	Added stackTracePrefix configuration option to SyslogAppenderFactory to configure the pattern prepended to each line in the stack-trace sent to syslog. Defaults to the TAB character, “t”. Note: this is different from the bang prepended to text logs (such as “console”, and “file”), as syslog has different conventions for multi-line messages.

	Added ability to validate Optional values using validation annotations. Such values require the @UnwrapValidatedValue annotation, in addition to the validations you wish to use.

	Added facility to configure the User-Agent for HttpClient. Configurable via the userAgent configuration option.

	Added configurable AllowedMethodsFilter. Configure allowed HTTP methods for both the application and admin connectors with allowedMethods.

	Added support for specifying a CredentialProvider for HTTP clients.

	Fixed silently overriding Servlets or ServletFilters; registering a duplicate will now emit a warning.

	Fixed SyslogAppenderFactory failing when the application name contains a PCRE reserved character (e.g. / or $).

	Fixed regression causing JMX reporting of metrics to not be enabled by default.

	Fixed transitive dependencies on log4j and extraneous sl4j backends bleeding in to projects. Dropwizard will now enforce that only Logback and slf4j-logback are used everywhere.

	Fixed clients disconnecting before the request has been fully received causing a “500 Internal Server Error” to be generated for the request log. Such situations will now correctly generate a “400 Bad Request”, as the request is malformed. Clients will never see these responses, but they matter for logging and metrics that were previously considering this situation as a server error.

	Fixed DiscoverableSubtypeResolver using the system ClassLoader, instead of the local one.

	Fixed regression causing Liquibase --dump to fail to dump the database.

	Fixed the CSV metrics reporter failing when the output directory doesn’t exist. It will now attempt to create the directory on startup.

	Fixed global frequency for metrics reporters being permanently overridden by the default frequency for individual reporters.

	Fixed tests failing on Windows due to platform-specific line separators.

	Changed DropwizardAppTestRule so that it no longer requires a configuration path to operate. When no path is specified, it will now use the applications’ default configuration.

	Changed Bootstrap so that getMetricsFactory() may now be overridden to provide a custom instance to the framework to use.

	Upgraded to Guava 17.0
Note: this addresses a bug with BloomFilters that is incompatible with pre-17.0 BloomFilters.

	Upgraded to Jackson 2.3.3

	Upgraded to Apache HttpClient 4.3.4

	Upgraded to Metrics 3.0.2

	Upgraded to Logback 1.1.2

	Upgraded to h2 1.4.178

	Upgraded to JDBI 2.55

	Upgraded to Hibernate 4.3.5 Final

	Upgraded to Hibernate Validator 5.1.1 Final

	Upgraded to Mustache 0.8.15

v0.7.0: Apr 04 2014

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/4?closed=1]

	Upgraded to Java 7.

	Moved to the io.dropwizard group ID and namespace.

	Extracted out a number of reusable libraries: dropwizard-configuration,
dropwizard-jackson, dropwizard-jersey, dropwizard-jetty, dropwizard-lifecycle,
dropwizard-logging, dropwizard-servlets, dropwizard-util, dropwizard-validation.

	Extracted out various elements of Environment to separate classes: JerseyEnvironment,
LifecycleEnvironment, etc.

	Extracted out dropwizard-views-freemarker and dropwizard-views-mustache.
dropwizard-views just provides infrastructure now.

	Renamed Service to Application.

	Added dropwizard-forms, which provides support for multipart MIME entities.

	Added dropwizard-spdy.

	Added AppenderFactory, allowing for arbitrary logging appenders for application and request
logs.

	Added ConnectorFactory, allowing for arbitrary Jetty connectors.

	Added ServerFactory, with multi- and single-connector implementations.

	Added ReporterFactory, for metrics reporters, with Graphite and Ganglia implementations.

	Added ConfigurationSourceProvider to allow loading configuration files from sources other than
the filesystem.

	Added setuid support. Configure the user/group to run as and soft/hard open file limits in the
ServerFactory. To bind to privileged ports (e.g. 80), enable startsAsRoot and set user
and group, then start your application as the root user.

	Added builders for managed executors.

	Added a default check command, which loads and validates the service configuration.

	Added support for the Jersey HTTP client to dropwizard-client.

	Added Jackson Afterburner support.

	Added support for deflate-encoded requests and responses.

	Added support for HTTP Sessions. Add the annotated parameter to your resource method:
@Session HttpSession session to have the session context injected.

	Added support for a “flash” message to be propagated across requests. Add the annotated parameter
to your resource method: @Session Flash message to have any existing flash message injected.

	Added support for deserializing Java enums with fuzzy matching rules (i.e., whitespace
stripping, -/_ equivalence, case insensitivity, etc.).

	Added HibernateBundle#configure(Configuration) for customization of Hibernate configuration.

	Added support for Joda Time DateTime arguments and results when using JDBI.

	Added configuration option to include Exception stack-traces when logging to syslog. Stack traces
are now excluded by default.

	Added the application name and PID (if detectable) to the beginning of syslog messages, as is the
convention.

	Added --migrations command-line option to migrate command to supply the migrations
file explicitly.

	Validation errors are now returned as application/json responses.

	Simplified AsyncRequestLog; now standardized on Jetty 9 NCSA format.

	Renamed DatabaseConfiguration to DataSourceFactory, and ConfigurationStrategy to
DatabaseConfiguration.

	Changed logging to be asynchronous. Messages are now buffered and batched in-memory before being
delivered to the configured appender(s).

	Changed handling of runtime configuration errors. Will no longer display an Exception stack-trace
and will present a more useful description of the problem, including suggestions when appropriate.

	Changed error handling to depend more heavily on Jersey exception mapping.

	Changed dropwizard-db to use tomcat-jdbc instead of tomcat-dbcp.

	Changed default formatting when logging nested Exceptions to display the root-cause first.

	Replaced ResourceTest with ResourceTestRule, a JUnit TestRule.

	Dropped Scala support.

	Dropped ManagedSessionFactory.

	Dropped ObjectMapperFactory; use ObjectMapper instead.

	Dropped Validator; use javax.validation.Validator instead.

	Fixed a shutdown bug in dropwizard-migrations.

	Fixed formatting of “Caused by” lines not being prefixed when logging nested Exceptions.

	Fixed not all available Jersey endpoints were being logged at startup.

	Upgraded to argparse4j 0.4.3.

	Upgraded to Guava 16.0.1.

	Upgraded to Hibernate Validator 5.0.2.

	Upgraded to Jackson 2.3.1.

	Upgraded to JDBI 2.53.

	Upgraded to Jetty 9.0.7.

	Upgraded to Liquibase 3.1.1.

	Upgraded to Logback 1.1.1.

	Upgraded to Metrics 3.0.1.

	Upgraded to Mustache 0.8.14.

	Upgraded to SLF4J 1.7.6.

	Upgraded to Jersey 1.18.

	Upgraded to Apache HttpClient 4.3.2.

	Upgraded to tomcat-jdbc 7.0.50.

	Upgraded to Hibernate 4.3.1.Final.

v0.6.2: Mar 18 2013

	Added support for non-UTF8 views.

	Fixed an NPE for services in the root package.

	Fixed exception handling in TaskServlet.

	Upgraded to Slf4j 1.7.4.

	Upgraded to Jetty 8.1.10.

	Upgraded to Jersey 1.17.1.

	Upgraded to Jackson 2.1.4.

	Upgraded to Logback 1.0.10.

	Upgraded to Hibernate 4.1.9.

	Upgraded to Hibernate Validator 4.3.1.

	Upgraded to tomcat-dbcp 7.0.37.

	Upgraded to Mustache.java 0.8.10.

	Upgraded to Apache HttpClient 4.2.3.

	Upgraded to Jackson 2.1.3.

	Upgraded to argparse4j 0.4.0.

	Upgraded to Guava 14.0.1.

	Upgraded to Joda Time 2.2.

	Added retries to HttpClientConfiguration.

	Fixed log formatting for extended stack traces, also now using extended stack traces as the
default.

	Upgraded to FEST Assert 2.0M10.

v0.6.1: Nov 28 2012

	Fixed incorrect latencies in request logs on Linux.

	Added ability to register multiple ServerLifecycleListener instances.

v0.6.0: Nov 26 2012

	Added Hibernate support in dropwizard-hibernate.

	Added Liquibase migrations in dropwizard-migrations.

	Renamed http.acceptorThreadCount to http.acceptorThreads.

	Renamed ssl.keyStorePath to ssl.keyStore.

	Dropped JerseyClient. Use Jersey’s Client class instead.

	Moved JDBI support to dropwizard-jdbi.

	Dropped Database. Use JDBI’s DBI class instead.

	Dropped the Json class. Use ObjectMapperFactory and ObjectMapper instead.

	Decoupled JDBI support from tomcat-dbcp.

	Added group support to Validator.

	Moved CLI support to argparse4j.

	Fixed testing support for Optional resource method parameters.

	Fixed Freemarker support to use its internal encoding map.

	Added property support to ResourceTest.

	Fixed JDBI metrics support for raw SQL queries.

	Dropped Hamcrest matchers in favor of FEST assertions in dropwizard-testing.

	Split Environment into Bootstrap and Environment, and broke configuration of each into
Service’s #initialize(Bootstrap) and #run(Configuration, Environment).

	Combined AbstractService and Service.

	Trimmed down ScalaService, so be sure to add ScalaBundle.

	Added support for using JerseyClientFactory without an Environment.

	Dropped Jerkson in favor of Jackson’s Scala module.

	Added Optional support for JDBI.

	Fixed bug in stopping AsyncRequestLog.

	Added UUIDParam.

	Upgraded to Metrics 2.2.0.

	Upgraded to Jetty 8.1.8.

	Upgraded to Mockito 1.9.5.

	Upgraded to tomcat-dbcp 7.0.33.

	Upgraded to Mustache 0.8.8.

	Upgraded to Jersey 1.15.

	Upgraded to Apache HttpClient 4.2.2.

	Upgraded to JDBI 2.41.

	Upgraded to Logback 1.0.7 and SLF4J 1.7.2.

	Upgraded to Guava 13.0.1.

	Upgraded to Jackson 2.1.1.

	Added support for Joda Time.

Note

Upgrading to 0.6.0 will require changing your code. First, your Service subclass will
need to implement both #initialize(Bootstrap<T>) and
#run(T, Environment). What used to be in initialize should be moved to run.
Second, your representation classes need to be migrated to Jackson 2. For the most part,
this is just changing imports to com.fasterxml.jackson.annotation.*, but there are
some subtler changes in functionality [http://wiki.fasterxml.com/JacksonUpgradeFrom19To20].
Finally, references to 0.5.x’s Json, JerseyClient, or JDBI classes should be
changed to Jackon’s ObjectMapper, Jersey’s Client, and JDBI’s DBI
respectively.

v0.5.1: Aug 06 2012

	Fixed logging of managed objects.

	Fixed default file logging configuration.

	Added FEST-Assert as a dropwizard-testing dependency.

	Added support for Mustache templates (*.mustache) to dropwizard-views.

	Added support for arbitrary view renderers.

	Fixed command-line overrides when no configuration file is present.

	Added support for arbitrary DnsResolver implementations in HttpClientFactory.

	Upgraded to Guava 13.0 final.

	Fixed task path bugs.

	Upgraded to Metrics 2.1.3.

	Added JerseyClientConfiguration#compressRequestEntity for disabling the compression of request
entities.

	Added Environment#scanPackagesForResourcesAndProviders for automatically detecting Jersey
providers and resources.

	Added Environment#setSessionHandler.

v0.5.0: Jul 30 2012

	Upgraded to JDBI 2.38.1.

	Upgraded to Jackson 1.9.9.

	Upgraded to Jersey 1.13.

	Upgraded to Guava 13.0-rc2.

	Upgraded to HttpClient 4.2.1.

	Upgraded to tomcat-dbcp 7.0.29.

	Upgraded to Jetty 8.1.5.

	Improved AssetServlet:

	More accurate Last-Modified-At timestamps.

	More general asset specification.

	Default filename is now configurable.

	Improved JacksonMessageBodyProvider:

	Now based on Jackson’s JAX-RS support.

	Doesn’t read or write types annotated with @JsonIgnoreType.

	Added @MinSize, @MaxSize, and @SizeRange validations.

	Added @MinDuration, @MaxDuration, and @DurationRange validations.

	Fixed race conditions in Logback initialization routines.

	Fixed TaskServlet problems with custom context paths.

	Added jersey-text-framework-core as an explicit dependency of dropwizard-testing. This
helps out some non-Maven build frameworks with bugs in dependency processing.

	Added addProvider to JerseyClientFactory.

	Fixed NullPointerException problems with anonymous health check classes.

	Added support for serializing/deserializing ByteBuffer instances as JSON.

	Added supportedProtocols to SSL configuration, and disabled SSLv2 by default.

	Added support for Optional<Integer> query parameters and others.

	Removed jersey-freemarker dependency from dropwizard-views.

	Fixed missing thread contexts in logging statements.

	Made the configuration file argument for the server command optional.

	Added support for disabling log rotation.

	Added support for arbitrary KeyStore types.

	Added Log.forThisClass().

	Made explicit service names optional.

v0.4.4: Jul 24 2012

	Added support for @JsonIgnoreType to JacksonMessageBodyProvider.

v0.4.3: Jun 22 2012

	Re-enable immediate flushing for file and console logging appenders.

v0.4.2: Jun 20 2012

	Fixed JsonProcessingExceptionMapper. Now returns human-readable error messages for malformed
or invalid JSON as a 400 Bad Request. Also handles problems with JSON generation and object
mapping in a developer-friendly way.

v0.4.1: Jun 19 2012

	Fixed type parameter resolution in for subclasses of subclasses of ConfiguredCommand.

	Upgraded to Jackson 1.9.7.

	Upgraded to Logback 1.0.6, with asynchronous logging.

	Upgraded to Hibernate Validator 4.3.0.

	Upgraded to JDBI 2.34.

	Upgraded to Jetty 8.1.4.

	Added logging.console.format, logging.file.format, and logging.syslog.format
parameters for custom log formats.

	Extended ResourceTest to allow for enabling/disabling specific Jersey features.

	Made Configuration serializable as JSON.

	Stopped lumping command-line options in a group in Command.

	Fixed java.util.logging level changes.

	Upgraded to Apache HttpClient 4.2.

	Improved performance of AssetServlet.

	Added withBundle to ScalaService to enable bundle mix-ins.

	Upgraded to SLF4J 1.6.6.

	Enabled configuration-parameterized Jersey containers.

	Upgraded to Jackson Guava 1.9.1, with support for Optional.

	Fixed error message in AssetBundle.

	Fixed WebApplicationException``s being thrown by ``JerseyClient.

v0.4.0: May 1 2012

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/3?closed=1]

	Switched logging from Log4j [http://logging.apache.org/log4j/1.2/] to Logback [http://logback.qos.ch/].

	Deprecated Log#fatal methods.

	Deprecated Log4j usage.

	Removed Log4j JSON support.

	Switched file logging to a time-based rotation system with optional GZIP and ZIP compression.

	Replaced logging.file.filenamePattern with logging.file.currentLogFilename and
logging.file.archivedLogFilenamePattern.

	Replaced logging.file.retainedFileCount with logging.file.archivedFileCount.

	Moved request logging to use a Logback-backed, time-based rotation system with optional GZIP
and ZIP compression. http.requestLog now has console, file, and syslog
sections.

	Fixed validation errors for logging configuration.

	Added ResourceTest#addProvider(Class<?>).

	Added ETag and Last-Modified support to AssetServlet.

	Fixed off logging levels conflicting with YAML’s helpfulness.

	Improved Optional support for some JDBC drivers.

	Added ResourceTest#getJson().

	Upgraded to Jackson 1.9.6.

	Improved syslog logging.

	Fixed template paths for views.

	Upgraded to Guava 12.0.

	Added support for deserializing CacheBuilderSpec instances from JSON/YAML.

	Switched AssetsBundle and servlet to using cache builder specs.

	Switched CachingAuthenticator to using cache builder specs.

	Malformed JSON request entities now produce a 400 Bad Request instead of a
500 Server Error response.

	Added connectionTimeout, maxConnectionsPerRoute, and keepAlive to
HttpClientConfiguration.

	Added support for using Guava’s HostAndPort in configuration properties.

	Upgraded to tomcat-dbcp 7.0.27.

	Upgraded to JDBI 2.33.2.

	Upgraded to HttpClient 4.1.3.

	Upgraded to Metrics 2.1.2.

	Upgraded to Jetty 8.1.3.

	Added SSL support.

v0.3.1: Mar 15 2012

	Fixed debug logging levels for Log.

v0.3.0: Mar 13 2012

Complete changelog on GitHub [https://github.com/dropwizard/dropwizard/milestone/1?closed=1]

	Upgraded to JDBI 2.31.3.

	Upgraded to Jackson 1.9.5.

	Upgraded to Jetty 8.1.2. (Jetty 9 is now the experimental branch. Jetty 8 is just Jetty 7 with
Servlet 3.0 support.)

	Dropped dropwizard-templates and added dropwizard-views instead.

	Added AbstractParam#getMediaType().

	Fixed potential encoding bug in parsing YAML files.

	Fixed a NullPointerException when getting logging levels via JMX.

	Dropped support for @BearerToken and added dropwizard-auth instead.

	Added @CacheControl for resource methods.

	Added AbstractService#getJson() for full Jackson customization.

	Fixed formatting of configuration file parsing errors.

	ThreadNameFilter is now added by default. The thread names Jetty worker threads are set to the
method and URI of the HTTP request they are currently processing.

	Added command-line overriding of configuration parameters via system properties. For example,
-Ddw.http.port=8090 will override the configuration file to set http.port to 8090.

	Removed ManagedCommand. It was rarely used and confusing.

	If http.adminPort is the same as http.port, the admin servlet will be hosted under
/admin. This allows Dropwizard applications to be deployed to environments like Heroku, which
require applications to open a single port.

	Added http.adminUsername and http.adminPassword to allow for Basic HTTP Authentication
for the admin servlet.

	Upgraded to Metrics 2.1.1 [http://metrics.codahale.com/about/release-notes/#v2-1-1-mar-13-2012].

v0.2.1: Feb 24 2012

	Added logging.console.timeZone and logging.file.timeZone to control the time zone of
the timestamps in the logs. Defaults to UTC.

	Upgraded to Jetty 7.6.1.

	Upgraded to Jersey 1.12.

	Upgraded to Guava 11.0.2.

	Upgraded to SnakeYAML 1.10.

	Upgraded to tomcat-dbcp 7.0.26.

	Upgraded to Metrics 2.0.3.

v0.2.0: Feb 15 2012

	Switched to using jackson-datatype-guava for JSON serialization/deserialization of Guava
types.

	Use InstrumentedQueuedThreadPool from metrics-jetty.

	Upgraded to Jackson 1.9.4.

	Upgraded to Jetty 7.6.0 final.

	Upgraded to tomcat-dbcp 7.0.25.

	Improved fool-proofing for Service vs. ScalaService.

	Switched to using Jackson for configuration file parsing. SnakeYAML is used to parse YAML
configuration files to a JSON intermediary form, then Jackson is used to map that to your
Configuration subclass and its fields. Configuration files which don’t end in .yaml or
.yml are treated as JSON.

	Rewrote Json to no longer be a singleton.

	Converted JsonHelpers in dropwizard-testing to use normalized JSON strings to compare
JSON.

	Collapsed DatabaseConfiguration. It’s no longer a map of connection names to configuration
objects.

	Changed Database to use the validation query in DatabaseConfiguration for its #ping()
method.

	Changed many HttpConfiguration defaults to match Jetty’s defaults.

	Upgraded to JDBI 2.31.2.

	Fixed JAR locations in the CLI usage screens.

	Upgraded to Metrics 2.0.2.

	Added support for all servlet listener types.

	Added Log#setLevel(Level).

	Added Service#getJerseyContainer, which allows services to fully customize the Jersey
container instance.

	Added the http.contextParameters configuration parameter.

v0.1.3: Jan 19 2012

	Upgraded to Guava 11.0.1.

	Fixed logging in ServerCommand. For the last time.

	Switched to using the instrumented connectors from metrics-jetty. This allows for much
lower-level metrics about your service, including whether or not your thread pools are overloaded.

	Added FindBugs to the build process.

	Added ResourceTest to dropwizard-testing, which uses the Jersey Test Framework to provide
full testing of resources.

	Upgraded to Jetty 7.6.0.RC4.

	Decoupled URIs and resource paths in AssetServlet and AssetsBundle.

	Added rootPath to Configuration. It allows you to serve Jersey assets off a specific path
(e.g., /resources/* vs /*).

	AssetServlet now looks for index.htm when handling requests for the root URI.

	Upgraded to Metrics 2.0.0-RC0.

v0.1.2: Jan 07 2012

	All Jersey resource methods annotated with @Timed, @Metered, or @ExceptionMetered are
now instrumented via metrics-jersey.

	Now licensed under Apache License 2.0.

	Upgraded to Jetty 7.6.0.RC3.

	Upgraded to Metrics 2.0.0-BETA19.

	Fixed logging in ServerCommand.

	Made ServerCommand#run() non-final.

v0.1.1: Dec 28 2011

	Fixed ManagedCommand to provide access to the Environment, among other things.

	Made JerseyClient’s thread pool managed.

	Improved ease of use for Duration and Size configuration parameters.

	Upgraded to Mockito 1.9.0.

	Upgraded to Jetty 7.6.0.RC2.

	Removed single-arg constructors for ConfiguredCommand.

	Added Log, a simple front-end for logging.

v0.1.0: Dec 21 2011

	Initial release

Security

No known issues exist

Documentation TODOs

Other Versions

	1.3.4 [http://dropwizard.github.io/dropwizard/1.3.4/docs]

	1.3.3 [http://dropwizard.github.io/dropwizard/1.3.3/docs]

	1.3.2 [http://dropwizard.github.io/dropwizard/1.3.2/docs]

	1.3.1 [http://dropwizard.github.io/dropwizard/1.3.1/docs]

	1.3.0 [http://dropwizard.github.io/dropwizard/1.3.0/docs]

	1.2.7 [http://dropwizard.github.io/dropwizard/1.2.7/docs]

	1.2.6 [http://dropwizard.github.io/dropwizard/1.2.6/docs]

	1.2.5 [http://dropwizard.github.io/dropwizard/1.2.5/docs]

	1.2.4 [http://dropwizard.github.io/dropwizard/1.2.4/docs]

	1.2.3 [http://dropwizard.github.io/dropwizard/1.2.3/docs]

	1.2.2 [http://dropwizard.github.io/dropwizard/1.2.2/docs]

	1.2.1 [http://dropwizard.github.io/dropwizard/1.2.1/docs]

	1.2.0 [http://dropwizard.github.io/dropwizard/1.2.0/docs]

	1.1.6 [http://dropwizard.github.io/dropwizard/1.1.6/docs]

	1.1.4 [http://dropwizard.github.io/dropwizard/1.1.4/docs]

	1.1.3 [http://dropwizard.github.io/dropwizard/1.1.3/docs]

	1.1.2 [http://dropwizard.github.io/dropwizard/1.1.2/docs]

	1.1.0 [http://dropwizard.github.io/dropwizard/1.1.0/docs]

	1.0.6 [http://dropwizard.github.io/dropwizard/1.0.6/docs]

	1.0.5 [http://dropwizard.github.io/dropwizard/1.0.5/docs]

	1.0.4 [http://dropwizard.github.io/dropwizard/1.0.4/docs]

	1.0.3 [http://dropwizard.github.io/dropwizard/1.0.3/docs]

	1.0.2 [http://dropwizard.github.io/dropwizard/1.0.2/docs]

	1.0.1 [http://dropwizard.github.io/dropwizard/1.0.1/docs]

	1.0.0 [http://dropwizard.github.io/dropwizard/1.0.0/docs]

	0.9.3 [http://dropwizard.github.io/dropwizard/0.9.3/docs]

	0.9.2 [http://dropwizard.github.io/dropwizard/0.9.2/docs]

	0.9.1 [http://dropwizard.github.io/dropwizard/0.9.1/docs]

	0.9.0 [http://dropwizard.github.io/dropwizard/0.9.0/docs]

	0.8.5 [http://dropwizard.github.io/dropwizard/0.8.5/docs]

	0.8.4 [http://dropwizard.github.io/dropwizard/0.8.4/docs]

	0.8.2 [http://dropwizard.github.io/dropwizard/0.8.2/docs]

	0.8.1 [http://dropwizard.github.io/dropwizard/0.8.1/docs]

	0.8.0 [http://dropwizard.github.io/dropwizard/0.8.0/docs]

	0.7.1 [http://dropwizard.github.io/dropwizard/0.7.1/docs]

	0.6.2 [http://dropwizard.github.io/dropwizard/0.6.2]

Index

 _static/dropwizard-logo.png

_static/down.png

_static/dropwizard-hat.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Dropwizard is a Java framework for developing ops-friendly, high-performance, RESTful web services.

 		
 Getting Started

 		
 Overview

 		
 Jetty for HTTP

 		
 Jersey for REST

 		
 Jackson for JSON

 		
 Metrics for metrics

 		
 And Friends

 		
 Setting Up Using Maven

 		
 Tutorial

 		
 Creating A Configuration Class

 		
 Creating An Application Class

 		
 Creating A Representation Class

 		
 Creating A Resource Class

 		
 Registering A Resource

 		
 Creating A Health Check

 		
 Adding A Health Check

 		
 Building Fat JARs

 		
 Versioning Your JARs

 		
 Running Your Application

 		
 Next Steps

 		
 User Manual

 		
 Dropwizard Core

 		
 Organizing Your Project

 		
 Application

 		
 Configuration

 		
 Bootstrapping

 		
 Environments

 		
 Health Checks

 		
 Managed Objects

 		
 Bundles

 		
 Commands

 		
 Tasks

 		
 Logging

 		
 Testing Applications

 		
 Banners

 		
 Resources

 		
 Representations

 		
 How it’s glued together

 		
 Dropwizard Client

 		
 Apache HttpClient

 		
 Jersey Client

 		
 Dropwizard JDBI

 		
 Configuration

 		
 Usage

 		
 Exception Handling

 		
 Prepended Comments

 		
 Library Support

 		
 Dropwizard JDBI3

 		
 Configuration

 		
 Plugins

 		
 Usage

 		
 Exception Handling

 		
 Prepended Comments

 		
 Dropwizard Migrations

 		
 Configuration

 		
 Adding The Bundle

 		
 Defining Migrations

 		
 Checking Your Database’s State

 		
 Dumping Your Schema

 		
 Tagging Your Schema

 		
 Migrating Your Schema

 		
 Rolling Back Your Schema

 		
 Testing Migrations

 		
 Preparing A Rollback Script

 		
 Generating Documentation

 		
 Dropping All Objects

 		
 Fast-Forwarding Through A Changeset

 		
 Support For Adding Multiple Migration Bundles

 		
 More Information

 		
 Dropwizard Hibernate

 		
 Configuration

 		
 Usage

 		
 Prepended Comments

 		
 Dropwizard Authentication

 		
 Authenticators

 		
 Authorizer

 		
 Basic Authentication

 		
 OAuth2

 		
 Chained Factories

 		
 Protecting Resources

 		
 Testing Protected Resources

 		
 Multiple Principals and Authenticators

 		
 Dropwizard Forms

 		
 Adding The Bundle

 		
 Testing

 		
 More Information

 		
 Dropwizard Validation

 		
 Validations

 		
 Limitations

 		
 Annotations

 		
 Testing

 		
 Extending

 		
 Dropwizard Views

 		
 Template Errors

 		
 Caching

 		
 Custom Error Pages

 		
 Dropwizard & Scala

 		
 Testing Dropwizard

 		
 Testing Representations

 		
 Testing Resources

 		
 Testing Client Implementations

 		
 Integration Testing

 		
 Testing Commands

 		
 Testing Database Interactions

 		
 Testing Configurations

 		
 Dropwizard Example, Step by Step

 		
 Dropwizard Configuration Reference

 		
 Servers

 		
 Connectors

 		
 Logging

 		
 Metrics

 		
 Clients

 		
 Database

 		
 Polymorphic configuration

 		
 Dropwizard Internals

 		
 Startup Sequence

 		
 Jetty Lifecycle

 		
 Javadoc

 		
 About Dropwizard

 		
 Contributors

 		
 Sponsors

 		
 JetBrains

 		
 Frequently Asked Questions

 		
 Release Notes

 		
 v1.3.5: Jun 25, 2018

 		
 v1.2.8: Jun 25, 2018

 		
 v1.1.8: Jun 25, 2018

 		
 v1.3.4: Jun 14, 2018

 		
 v1.2.7: Jun 14, 2018

 		
 v1.3.3: Jun 6, 2018

 		
 v1.3.2: May 11, 2018

 		
 v1.2.6: May 11, 2018

 		
 v1.3.1: Apr 4, 2018

 		
 v1.2.5: Apr 4, 2018

 		
 v1.3.0: Mar 14, 2018

 		
 v1.2.4: Feb 23, 2018

 		
 v1.1.7: Feb 23, 2018

 		
 v1.2.3: Jan 24, 2018

 		
 v1.2.2: Nov 27, 2017

 		
 v1.2.1: Nov 22, 2017

 		
 v1.1.6: Nov 2, 2017

 		
 v1.1.5: Oct 17, 2017

 		
 v1.2.0: Oct 6 2017

 		
 v1.1.4: Aug 24 2017

 		
 v1.1.3: Jul 31 2017

 		
 v1.1.2 June 27 2017

 		
 v1.0.8 June 27 2017

 		
 v1.1.1 May 19 2017

 		
 v1.1.0: Mar 21 2017

 		
 v1.0.7 Mar 20 2017

 		
 v1.0.6 Jan 30 2017

 		
 v1.0.5 Nov 18 2016

 		
 v1.0.4 Nov 14 2016

 		
 v1.0.3: Oct 28 2016

 		
 v1.0.2: Sep 23 2016

 		
 v1.0.1: Sep 21 2016

 		
 v1.0.0: Jul 26 2016

 		
 v0.9.2: Jan 20 2016

 		
 v0.9.1: Nov 3 2015

 		
 v0.9.0: Oct 28 2015

 		
 v0.8.5: Nov 3 2015

 		
 v0.8.4: Aug 26 2015

 		
 v0.8.3: Aug 24 2015

 		
 v0.8.2: Jul 6 2015

 		
 v0.8.1: Apr 7 2015

 		
 v0.8.0: Mar 5 2015

 		
 v0.7.1: Jun 18 2014

 		
 v0.7.0: Apr 04 2014

 		
 v0.6.2: Mar 18 2013

 		
 v0.6.1: Nov 28 2012

 		
 v0.6.0: Nov 26 2012

 		
 v0.5.1: Aug 06 2012

 		
 v0.5.0: Jul 30 2012

 		
 v0.4.4: Jul 24 2012

 		
 v0.4.3: Jun 22 2012

 		
 v0.4.2: Jun 20 2012

 		
 v0.4.1: Jun 19 2012

 		
 v0.4.0: May 1 2012

 		
 v0.3.1: Mar 15 2012

 		
 v0.3.0: Mar 13 2012

 		
 v0.2.1: Feb 24 2012

 		
 v0.2.0: Feb 15 2012

 		
 v0.1.3: Jan 19 2012

 		
 v0.1.2: Jan 07 2012

 		
 v0.1.1: Dec 28 2011

 		
 v0.1.0: Dec 21 2011

 		
 Security

 		
 Documentation TODOs

 		
 Other Versions

_images/jetbrains.png

_static/ajax-loader.gif

