

 Navigation

 	
 index

 	
 next |

 	Dropwizard

Dropwizard is a Java framework for developing ops-friendly, high-performance, RESTful web services.

Dropwizard pulls together stable, mature libraries from the Java ecosystem into a
simple, light-weight package that lets you focus on getting things done.

Dropwizard has out-of-the-box support for sophisticated configuration,
application metrics, logging, operational tools, and much more, allowing you and your
team to ship a production-quality web service in the shortest time possible.

	Getting Started

	User Manual

	About Dropwizard

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

Getting Started

Getting Started will guide you through the process of creating a simple Dropwizard
project: Hello World. Along the way, we’ll explain the various underlying libraries and
their roles, important concepts in Dropwizard, and suggest some organizational
techniques to help you as your project grows. (Or you can just skip to the
fun part.)

Overview

Dropwizard straddles the line between being a library and a framework. Its goal is to provide
performant, reliable implementations of everything a production-ready web application needs. Because
this functionality is extracted into a reusable library, your application remains lean and focused,
reducing both time-to-market and maintenance burdens.

Jetty for HTTP

Because you can’t be a web application without HTTP, Dropwizard uses the Jetty [http://www.eclipse.org/jetty/] HTTP library to
embed an incredibly tuned HTTP server directly into your project. Instead of handing your
application off to a complicated application server, Dropwizard projects have a main method
which spins up an HTTP server. Running your application as a simple process eliminates a number of
unsavory aspects of Java in production (no PermGen issues, no application server configuration and
maintenance, no arcane deployment tools, no class loader troubles, no hidden application logs, no
trying to tune a single garbage collector to work with multiple application workloads) and allows
you to use all of the existing Unix process management tools instead.

Jersey for REST

For building RESTful web applications, we’ve found nothing beats Jersey [http://jersey.java.net] (the JAX-RS [http://jcp.org/en/jsr/detail?id=311] reference
implementation) in terms of features or performance. It allows you to write clean, testable classes
which gracefully map HTTP requests to simple Java objects. It supports streaming output, matrix URI
parameters, conditional GET requests, and much, much more.

Jackson for JSON

In terms of data formats, JSON has become the web’s lingua franca, and Jackson [http://wiki.fasterxml.com/JacksonHome] is the king of
JSON on the JVM. In addition to being lightning fast, it has a sophisticated object mapper, allowing
you to export your domain models directly.

Metrics for metrics

The Metrics [http://metrics.codahale.com] library rounds things out, providing you with unparalleled insight into your code’s
behavior in your production environment.

And Friends

In addition to Jetty [http://www.eclipse.org/jetty/], Jersey [http://jersey.java.net], and Jackson [http://wiki.fasterxml.com/JacksonHome], Dropwizard also includes a number of libraries to help
you ship more quickly and with less regrets.

	Guava [http://code.google.com/p/guava-libraries/], which, in addition to highly optimized immutable data structures, provides a growing
number of classes to speed up development in Java.

	Logback [http://logback.qos.ch/] and slf4j [http://www.slf4j.org/] for performant and flexible logging.

	Hibernate Validator [http://www.hibernate.org/subprojects/validator.html], the JSR-303 [http://jcp.org/en/jsr/detail?id=303] reference implementation, provides an easy, declarative
framework for validating user input and generating helpful, i18n-friendly error messages.

	The Apache HttpClient [http://hc.apache.org/httpcomponents-client-ga/index.html] and Jersey [http://jersey.java.net] client libraries allow for both low- and high-level
interaction with other web services.

	JDBI [http://www.jdbi.org] is the most straight-forward way to use a relational database with Java.

	Liquibase [http://www.liquibase.org] is a great way to keep your database schema in check throughout your development and
release cycles, applying high-level database refactorings instead of one-off DDL scripts.

	Freemarker [http://freemarker.sourceforge.net/] and Mustache [http://mustache.github.io/] are simple templating systems for more user-facing applications.

	Joda Time [http://joda-time.sourceforge.net/] is a very complete, sane library for handling dates and times.

Now that you’ve gotten the lay of the land, let’s dig in!

Setting Up Maven

We recommend you use Maven [http://maven.apache.org] for new Dropwizard applications. If you’re a big Ant [http://ant.apache.org/] / Ivy [http://ant.apache.org/ivy/], Buildr [http://buildr.apache.org/],
Gradle [http://www.gradle.org/], SBT [https://github.com/harrah/xsbt/wiki], Leiningen [https://github.com/technomancy/leiningen], or Gant [http://gant.codehaus.org/] fan, that’s cool, but we use Maven and we’ll be using Maven as
we go through this example application. If you have any questions about how Maven works,
Maven: The Complete Reference [http://www.sonatype.com/books/mvnref-book/reference/] should have what you’re looking for. (We’re assuming you know how
to create a new Maven project. If not, you can use this [https://gist.github.com/2019732] to get
started.)

First, add a dropwizard.version property to your POM with the current version of Dropwizard
(which is 0.7.0):

<properties>
 <dropwizard.version>INSERT VERSION HERE</dropwizard.version>
</properties>

Add the dropwizard-core library as a dependency:

<dependencies>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-core</artifactId>
 <version>${dropwizard.version}</version>
 </dependency>
</dependencies>

Alright, that’s enough XML. We’ve got a Maven project set up now, and it’s time to start writing
real code.

Creating A Configuration Class

Each Dropwizard application has its own subclass of the Configuration class which specifies
environment-specific parameters. These parameters are specified in a YAML [http://www.yaml.org/] configuration file which
is deserialized to an instance of your application’s configuration class and validated.

The application we’ll be building is a high-performance Hello World service, and one of our
requirements is that we need to be able to vary how it says hello from environment to environment.
We’ll need to specify at least two things to begin with: a template for saying hello and a default
name to use in case the user doesn’t specify their name.

Here’s what our configuration class will looks like, full example conf here [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/src/main/java/com/example/helloworld/HelloWorldConfiguration.java] :

package com.example.helloworld;

import io.dropwizard.Configuration;
import com.fasterxml.jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.NotEmpty;

public class HelloWorldConfiguration extends Configuration {
 @NotEmpty
 private String template;

 @NotEmpty
 private String defaultName = "Stranger";

 @JsonProperty
 public String getTemplate() {
 return template;
 }

 @JsonProperty
 public void setTemplate(String template) {
 this.template = template;
 }

 @JsonProperty
 public String getDefaultName() {
 return defaultName;
 }

 @JsonProperty
 public void setDefaultName(String name) {
 this.defaultName = name;
 }
}

There’s a lot going on here, so let’s unpack a bit of it.

When this class is deserialized from the YAML file, it will pull two root-level fields from the YAML
object: template, the template for our Hello World saying, and defaultName, the default name
to use. Both template and defaultName are annotated with @NotEmpty, so if the YAML
configuration file has blank values for either or is missing template entirely an informative
exception will be thrown and your application won’t start.

Both the getters and setters for template and defaultName are annotated with
@JsonProperty, which allows Jackson to both deserialize the properties from a YAML file but also
to serialize it.

Note

The mapping from YAML to your application’s Configuration instance is done
by Jackson [http://wiki.fasterxml.com/JacksonHome]. This means your Configuration class can use all of
Jackson’s object-mapping annotations [http://wiki.fasterxml.com/JacksonAnnotations]. The validation of @NotEmpty is
handled by Hibernate Validator, which has a
wide range of built-in constraints [http://docs.jboss.org/hibernate/validator/4.2/reference/en-US/html_single/#validator-defineconstraints-builtin] for you to use.

Our YAML file, will then look like the below, full example yml here [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml] :

template: Hello, %s!
defaultName: Stranger

Dropwizard has many more configuration parameters than that, but they all have sane defaults so
you can keep your configuration files small and focused.

So save that YAML file as hello-world.yml, because we’ll be getting up and running pretty soon
and we’ll need it. Next up, we’re creating our application class!

Creating An Application Class

Combined with your project’s Configuration subclass, its Application subclass forms the core
of your Dropwizard application. The Application class pulls together the various bundles and
commands which provide basic functionality. (More on that later.) For now, though, our
HelloWorldApplication looks like this:

package com.example.helloworld;

import io.dropwizard.Application;
import io.dropwizard.setup.Bootstrap;
import io.dropwizard.setup.Environment;
import com.example.helloworld.resources.HelloWorldResource;
import com.example.helloworld.health.TemplateHealthCheck;

public class HelloWorldApplication extends Application<HelloWorldConfiguration> {
 public static void main(String[] args) throws Exception {
 new HelloWorldApplication().run(args);
 }

 @Override
 public String getName() {
 return "hello-world";
 }

 @Override
 public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {
 // nothing to do yet
 }

 @Override
 public void run(HelloWorldConfiguration configuration,
 Environment environment) {
 // nothing to do yet
 }

}

As you can see, HelloWorldApplication is parameterized with the application’s configuration
type, HelloWorldConfiguration. An initialize method is used to configure aspects of the
application required before the application is run, like bundles, configuration source providers,
etc. Also, we’ve added a static main method, which will be our application’s entry point.
Right now, we don’t have any functionality implemented, so our run method is a little boring.
Let’s fix that!

Creating A Representation Class

Before we can get into the nuts-and-bolts of our Hello World application, we need to stop and think
about our API. Luckily, our application needs to conform to an industry standard, RFC 1149 [http://www.ietf.org/rfc/rfc1149.txt],
which specifies the following JSON representation of a Hello World saying:

{
 "id": 1,
 "content": "Hi!"
}

The id field is a unique identifier for the saying, and content is the textual
representation of the saying. (Thankfully, this is a fairly straight-forward industry standard.)

To model this representation, we’ll create a representation class:

package com.example.helloworld.core;

import com.fasterxml.jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.Length;

public class Saying {
 private long id;

 @Length(max = 3)
 private String content;

 public Saying() {
 // Jackson deserialization
 }

 public Saying(long id, String content) {
 this.id = id;
 this.content = content;
 }

 @JsonProperty
 public long getId() {
 return id;
 }

 @JsonProperty
 public String getContent() {
 return content;
 }
}

This is a pretty simple POJO, but there are a few things worth noting here.

First, it’s immutable. This makes Saying instances very easy to reason about in multi-threaded
environments as well as single-threaded environments. Second, it uses the Java Bean standard for the
id and content properties. This allows Jackson [http://wiki.fasterxml.com/JacksonHome] to serialize it to the JSON we need. The
Jackson object mapping code will populate the id field of the JSON object with the return value
of #getId(), likewise with content and #getContent(). Lastly, the bean leverages validation to ensure the content size is no greater than 3.

Note

The JSON serialization here is done by Jackson, which supports far more than simple JavaBean
objects like this one. In addition to the sophisticated set of annotations [http://wiki.fasterxml.com/JacksonAnnotations], you can even
write your own custom serializers and deserializers.

Now that we’ve got our representation class, it makes sense to start in on the resource it
represents.

Creating A Resource Class

Jersey resources are the meat-and-potatoes of a Dropwizard application. Each resource class is
associated with a URI template. For our application, we need a resource which returns new Saying
instances from the URI /hello-world, so our resource class will look like this:

package com.example.helloworld.resources;

import com.example.helloworld.core.Saying;
import com.google.common.base.Optional;
import com.codahale.metrics.annotation.Timed;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.MediaType;
import java.util.concurrent.atomic.AtomicLong;

@Path("/hello-world")
@Produces(MediaType.APPLICATION_JSON)
public class HelloWorldResource {
 private final String template;
 private final String defaultName;
 private final AtomicLong counter;

 public HelloWorldResource(String template, String defaultName) {
 this.template = template;
 this.defaultName = defaultName;
 this.counter = new AtomicLong();
 }

 @GET
 @Timed
 public Saying sayHello(@QueryParam("name") Optional<String> name) {
 final String value = String.format(template, name.or(defaultName));
 return new Saying(counter.incrementAndGet(), value);
 }
}

Finally, we’re in the thick of it! Let’s start from the top and work our way down.

HelloWorldResource has two annotations: @Path and @Produces. @Path("/hello-world")
tells Jersey that this resource is accessible at the URI /hello-world, and
@Produces(MediaType.APPLICATION_JSON) lets Jersey’s content negotiation code know that this
resource produces representations which are application/json.

HelloWorldResource takes two parameters for construction: the template it uses to produce
the saying and the defaultName used when the user declines to tell us their name. An
AtomicLong provides us with a cheap, thread-safe way of generating unique(ish) IDs.

Warning

Resource classes are used by multiple threads concurrently. In general, we recommend that
resources be stateless/immutable, but it’s important to keep the context in mind.

#sayHello(Optional<String>) is the meat of this class, and it’s a fairly simple method. The
@QueryParam("name") annotation tells Jersey to map the name parameter from the query string
to the name parameter in the method. If the client sends a request to
/hello-world?name=Dougie, sayHello will be called with Optional.of("Dougie"); if there
is no name parameter in the query string, sayHello will be called with
Optional.absent(). (Support for Guava’s Optional is a little extra sauce that Dropwizard
adds to Jersey’s existing functionality.)

Inside the sayHello method, we increment the counter, format the template using
String.format(String, Object...), and return a new Saying instance.

Because sayHello is annotated with @Timed, Dropwizard automatically records the duration and
rate of its invocations as a Metrics Timer.

Once sayHello has returned, Jersey takes the Saying instance and looks for a provider class
which can write Saying instances as application/json. Dropwizard has one such provider built
in which allows for producing and consuming Java objects as JSON objects. The provider writes out
the JSON and the client receives a 200 OK response with a content type of application/json.

Registering A Resource

Before that will actually work, though, we need to go back to HelloWorldApplication and add this
new resource class. In its run method we can read the template and default name from the
HelloWorldConfiguration instance, create a new HelloWorldResource instance, and then add
it to the application’s Jersey environment:

@Override
public void run(HelloWorldConfiguration configuration,
 Environment environment) {
 final HelloWorldResource resource = new HelloWorldResource(
 configuration.getTemplate(),
 configuration.getDefaultName()
);
 environment.jersey().register(resource);
}

When our application starts, we create a new instance of our resource class with the parameters from
the configuration file and hand it off to the Environment, which acts like a registry of all the
things your application can do.

Note

A Dropwizard application can contain many resource classes, each corresponding to its own URI
pattern. Just add another @Path-annotated resource class and call register with an
instance of the new class.

Before we go too far, we should add a health check for our application.

Creating A Health Check

Health checks give you a way of adding small tests to your application to allow you to verify that
your application is functioning correctly in production. We strongly recommend that all of your
applications have at least a minimal set of health checks.

Note

We recommend this so strongly, in fact, that Dropwizard will nag you should you neglect to add a
health check to your project.

Since formatting strings is not likely to fail while an application is running (unlike, say, a
database connection pool), we’ll have to get a little creative here. We’ll add a health check to
make sure we can actually format the provided template:

package com.example.helloworld.health;

import com.codahale.metrics.health.HealthCheck;

public class TemplateHealthCheck extends HealthCheck {
 private final String template;

 public TemplateHealthCheck(String template) {
 this.template = template;
 }

 @Override
 protected Result check() throws Exception {
 final String saying = String.format(template, "TEST");
 if (!saying.contains("TEST")) {
 return Result.unhealthy("template doesn't include a name");
 }
 return Result.healthy();
 }
}

TemplateHealthCheck checks for two things: that the provided template is actually a well-formed
format string, and that the template actually produces output with the given name.

If the string is not a well-formed format string (for example, someone accidentally put
Hello, %s% in the configuration file), then String.format(String, Object...) will throw an
IllegalFormatException and the health check will implicitly fail. If the rendered saying doesn’t
include the test string, the health check will explicitly fail by returning an unhealthy Result.

Adding A Health Check

As with most things in Dropwizard, we create a new instance with the appropriate parameters and add
it to the Environment:

@Override
public void run(HelloWorldConfiguration configuration,
 Environment environment) {
 final HelloWorldResource resource = new HelloWorldResource(
 configuration.getTemplate(),
 configuration.getDefaultName()
);
 final TemplateHealthCheck healthCheck =
 new TemplateHealthCheck(configuration.getTemplate());
 environment.healthChecks().register("template", healthCheck);
 environment.jersey().register(resource);
}

Now we’re almost ready to go!

Building Fat JARs

We recommend that you build your Dropwizard applications as “fat” JAR files — single .jar files
which contain all of the .class files required to run your application. This allows you to
build a single deployable artifact which you can promote from your staging environment to your QA
environment to your production environment without worrying about differences in installed
libraries. To start building our Hello World application as a fat JAR, we need to configure a Maven
plugin called maven-shade. In the <build><plugins> section of your pom.xml file, add
this:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.6</version>
 <configuration>
 <createDependencyReducedPom>true</createDependencyReducedPom>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>META-INF/*.SF</exclude>
 <exclude>META-INF/*.DSA</exclude>
 <exclude>META-INF/*.RSA</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
 <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
 <mainClass>com.example.helloworld.HelloWorldApplication</mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
</plugin>

This configures Maven to do a couple of things during its package phase:

	Produce a pom.xml file which doesn’t include dependencies for the libraries whose contents are
included in the fat JAR.

	Exclude all digital signatures from signed JARs. If you don’t, then Java considers the signature
invalid and won’t load or run your JAR file.

	Collate the various META-INF/services entries in the JARs instead of overwriting them.
(Neither Dropwizard nor Jersey works without those.)

	Set com.example.helloworld.HelloWorldApplication as the JAR’s MainClass. This will allow
you to run the JAR using java -jar.

Warning

If your application has a dependency which must be signed (e.g., a JCA/JCE [http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html] provider or
other trusted library), you have to add an exclusion [http://maven.apache.org/plugins/maven-shade-plugin/examples/includes-excludes.html] to the maven-shade-plugin
configuration for that library and include that JAR in the classpath.

Versioning Your JARs

Dropwizard can also use the project version if it’s embedded in the JAR’s manifest as the
Implementation-Version. To embed this information using Maven, add the following to the
<build><plugins> section of your pom.xml file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <archive>
 <manifest>
 <addDefaultImplementationEntries>true</addDefaultImplementationEntries>
 </manifest>
 </archive>
 </configuration>
</plugin>

This can be handy when trying to figure out what version of your application you have deployed on a
machine.

Once you’ve got that configured, go into your project directory and run mvn package (or run the
package goal from your IDE). You should see something like this:

[INFO] Including org.eclipse.jetty:jetty-util:jar:7.6.0.RC0 in the shaded jar.
[INFO] Including com.google.guava:guava:jar:10.0.1 in the shaded jar.
[INFO] Including com.google.code.findbugs:jsr305:jar:1.3.9 in the shaded jar.
[INFO] Including org.hibernate:hibernate-validator:jar:4.2.0.Final in the shaded jar.
[INFO] Including javax.validation:validation-api:jar:1.0.0.GA in the shaded jar.
[INFO] Including org.yaml:snakeyaml:jar:1.9 in the shaded jar.
[INFO] Replacing original artifact with shaded artifact.
[INFO] Replacing /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-SNAPSHOT.jar with /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-SNAPSHOT-shaded.jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 8.415s
[INFO] Finished at: Fri Dec 02 16:26:42 PST 2011
[INFO] Final Memory: 11M/81M
[INFO] --

Congratulations! You’ve built your first Dropwizard project! Now it’s time to run it!

Running Your Application

Now that you’ve built a JAR file, it’s time to run it.

In your project directory, run this:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar

You should see something like the following:

usage: java -jar hello-world-0.0.1-SNAPSHOT.jar
 [-h] [-v] {server} ...

positional arguments:
 {server} available commands

optional arguments:
 -h, --help show this help message and exit
 -v, --version show the service version and exit

Dropwizard takes the first command line argument and dispatches it to a matching command. In this
case, the only command available is server, which runs your application as an HTTP server. The
server command requires a configuration file, so let’s go ahead and give it
the YAML file we previously saved:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar server hello-world.yml

You should see something like the following:

INFO [2011-12-03 00:38:32,927] io.dropwizard.cli.ServerCommand: Starting hello-world
INFO [2011-12-03 00:38:32,931] org.eclipse.jetty.server.Server: jetty-7.x.y-SNAPSHOT
INFO [2011-12-03 00:38:32,936] org.eclipse.jetty.server.handler.ContextHandler: started o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:32,999] com.sun.jersey.server.impl.application.WebApplicationImpl: Initiating Jersey application, version 'Jersey: 1.10 11/02/2011 03:53 PM'
INFO [2011-12-03 00:38:33,041] io.dropwizard.setup.Environment:

 GET /hello-world (com.example.helloworld.resources.HelloWorldResource)

INFO [2011-12-03 00:38:33,215] org.eclipse.jetty.server.handler.ContextHandler: started o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:33,235] org.eclipse.jetty.server.AbstractConnector: Started BlockingChannelConnector@0.0.0.0:8080 STARTING
INFO [2011-12-03 00:38:33,238] org.eclipse.jetty.server.AbstractConnector: Started SocketConnector@0.0.0.0:8081 STARTING

Your Dropwizard application is now listening on ports 8080 for application requests and 8081
for administration requests. If you press ^C, the application will shut down gracefully, first
closing the server socket, then waiting for in-flight requests to be processed, then shutting down
the process itself.

But while it’s up, let’s give it a whirl!
Click here to say hello! [http://localhost:8080/hello-world]
Click here to get even friendlier! [http://localhost:8080/hello-world?name=Successful+Dropwizard+User]

So, we’re generating sayings. Awesome. But that’s not all your application can do. One of the main
reasons for using Dropwizard is the out-of-the-box operational tools it provides, all of which can
be found on the admin port [http://localhost:8081/].

If you click through to the metrics resource [http://localhost:8081/metrics], you can see all of
your application’s metrics represented as a JSON object.

The threads resource [http://localhost:8081/threads] allows you to quickly get a thread dump of
all the threads running in that process.

Hint

When a Jetty worker thread is handling an incoming HTTP request, the thread name is set to
the method and URI of the request. This can be very helpful when debugging a
poorly-behaving request.

The healthcheck resource [http://localhost:8081/healthcheck] runs the
health check class we wrote. You should see something like this:

* deadlocks: OK
* template: OK

template here is the result of your TemplateHealthCheck, which unsurprisingly passed.
deadlocks is a built-in health check which looks for deadlocked JVM threads and prints out a
listing if any are found.

Next Steps

Well, congratulations. You’ve got a Hello World application ready for production (except for the
lack of tests) that’s capable of doing 30,000-50,000 requests per second. Hopefully you’ve gotten a
feel for how Dropwizard combines Jetty, Jersey, Jackson, and other stable, mature libraries to
provide a phenomenal platform for developing RESTful web applications.

There’s a lot more to Dropwizard than is covered here (commands, bundles, servlets, advanced
configuration, validation, HTTP clients, database clients, views, etc.), all of which is covered by
the User Manual.

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

User Manual

This goal of this document is to provide you with all the information required to build,
organize, test, deploy, and maintain Dropwizard-based applications. If you’re new to
Dropwizard, you should read the Getting Started guide first.

	Dropwizard Core

	Dropwizard Client

	Dropwizard JDBI

	Dropwizard Migrations

	Dropwizard Hibernate

	Dropwizard Authentication

	Dropwizard Views

	Dropwizard & Scala

	Testing Dropwizard

	Dropwizard Example, Step by Step

	Dropwizard Configuration Reference

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard Core

The dropwizard-core module provides you with everything you’ll need for most of your
applications.

It includes:

	Jetty, a high-performance HTTP server.

	Jersey, a full-featured RESTful web framework.

	Jackson, the best JSON library for the JVM.

	Metrics, an excellent library for application metrics.

	Guava, Google’s excellent utility library.

	Logback, the successor to Log4j, Java’s most widely-used logging framework.

	Hibernate Validator, the reference implementation of the Java Bean Validation standard.

Dropwizard consists mostly of glue code to automatically connect and configure these components.

Organizing Your Project

In general, we recommend you separate your projects into three Maven modules: project-api,
project-client, and project-application.

project-api should contain your Representations; project-client should use
those classes and an HTTP client to implement a full-fledged client for your
application, and project-application should provide the actual application implementation, including
Resources.

Our applications tend to look like this:

	com.example.myapplication:
	api: Representations.

	cli: Commands

	client: Client implementation for your application

	core: Domain implementation

	jdbi: Database access classes

	health: Health Checks

	resources: Resources

	MyApplication: The application class

	MyApplicationConfiguration: configuration class

Application

The main entry point into a Dropwizard application is, unsurprisingly, the Application class. Each
Application has a name, which is mostly used to render the command-line interface. In the
constructor of your Application you can add Bundles and Commands to
your application.

Configuration

Dropwizard provides a number of built-in configuration parameters. They are
well documented in the example project’s configuration [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml].

Each Application subclass has a single type parameter: that of its matching Configuration
subclass. These are usually at the root of your application’s main package. For example, your User
application would have two classes: UserApplicationConfiguration, extending Configuration, and
UserApplication, extending Application<UserApplicationConfiguration>.

When your application runs Configured Commands like the server command, Dropwizard
parses the provided YAML configuration file and builds an instance of your application’s configuration
class by mapping YAML field names to object field names.

Note

If your configuration file doesn’t end in .yml or .yaml, Dropwizard tries to parse it
as a JSON file.

In order to keep your configuration file and class manageable, we recommend grouping related
configuration parameters into independent configuration classes. If your application requires a set of
configuration parameters in order to connect to a message queue, for example, we recommend that you
create a new MessageQueueFactory class:

public class MessageQueueFactory {
 @NotEmpty
 private String host;

 @Min(1)
 @Max(65535)
 private int port = 5672;

 @JsonProperty
 public String getHost() {
 return host;
 }

 @JsonProperty
 public void setHost(String host) {
 this.host = host;
 }

 @JsonProperty
 public int getPort() {
 return port;
 }

 @JsonProperty
 public void setPort(int port) {
 this.port = port;
 }

 public MessageQueueClient build(Environment environment) {
 MessageQueueClient client = new MessageQueueClient(getHost(), getPort());
 environment.lifecycle().manage(new Managed() {
 @Override
 public void start() {
 }

 @Override
 public void stop() {
 client.close();
 }
 };
 return client;
 }
}

In this example our factory will automatically tie our MessageQueueClient connection to the
lifecycle of our application’s Environment.

Your main Configuration subclass can then include this as a member field:

public class ExampleApplicationConfiguration extends Configuration {
 @Valid
 @NotNull
 private MessageQueueFactory messageQueue = new MessageQueueFactory();

 @JsonProperty("messageQueue")
 public MessageQueueFactory getMessageQueueFactory() {
 return messageQueue;
 }

 @JsonProperty("messageQueue")
 public void setMessageQueueFactory(MessageQueueFactory factory) {
 this.messageQueue = factory;
 }
}

And your Application subclass can then use your factory to directly construct a client for the
message queue:

public void run(ExampleConfiguration configuration,
 Environment environment) {
 MessageQueueClient messageQueue = configuration.getMessageQueueFactory().build(environment);
}

Then, in your application’s YAML file, you can use a nested messageQueue field:

messageQueue:
 host: mq.example.com
 port: 5673

The @NotNull, @NotEmpty, @Min, @Max, and @Valid annotations are part of Dropwizard’s
Validation functionality. If your YAML configuration file’s
messageQueue.host field was missing (or was a blank string), Dropwizard would refuse to start
and would output an error message describing the issues.

Once your application has parsed the YAML file and constructed its Configuration instance,
Dropwizard then calls your Application subclass to initialize your application’s Environment.

Note

You can override configuration settings by passing special Java system properties when starting
your application. Overrides must start with prefix dw., followed by the path to the
configuration value being overridden.

For example, to override the Logging level, you could start your application like this:

java -Ddw.logging.level=DEBUG server my-config.json

This will work even if the configuration setting in question does not exist in your config file, in
which case it will get added.

You can override configuration settings in arrays of objects like this:

java -Ddw.server.applicationConnectors[0].port=9090 server my-config.json

You can override configuration settings in maps like this:

java -Ddw.database.properties.hibernate.hbm2ddl.auto=none server my-config.json

You can also override a configuration setting that is an array of strings by using the ‘,’ character
as an array element separator. For example, to override a configuration setting myapp.myserver.hosts
that is an array of strings in the configuration, you could start your service like this:
java -Ddw.myapp.myserver.hosts=server1,server2,server3 server my-config.json

If you need to use the ‘,’ character in one of the values, you can escape it by using ‘,’ instead.

The array override facility only handles configuration elements that are arrays of simple strings.
Also, the setting in question must already exist in your configuration file as an array;
this mechanism will not work if the configuration key being overridden does not exist in your configuration
file. If it does not exist or is not an array setting, it will get added as a simple string setting, including
the ‘,’ characters as part of the string.

SSL

SSL support is built into Dropwizard. You will need to provide your own java
keystore, which is outside the scope of this document (keytool is the
command you need). There is a test keystore you can use in the
Dropwizard example project [https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example].

server:
 applicationConnectors:
 - type: https
 port: 8443
 keyStorePath: example.keystore
 keyStorePassword: example
 validateCerts: false

Bootstrapping

Before a Dropwizard application can provide the command-line interface, parse a configuration file, or
run as a server, it must first go through a bootstrapping phase. This phase corresponds to your
Application subclass’s initialize method. You can add Bundles,
Commands, or register Jackson modules to allow you to include custom types as part
of your configuration class.

Environments

A Dropwizard Environment consists of all the Resources, servlets, filters,
Health Checks, Jersey providers, Managed Objects, Tasks, and
Jersey properties which your application provides.

Each Application subclass implements a run method. This is where you should be creating new
resource instances, etc., and adding them to the given Environment class:

@Override
public void run(ExampleConfiguration config,
 Environment environment) {
 // encapsulate complicated setup logic in factories
 final Thingy thingy = config.getThingyFactory().build();

 environment.jersey().register(new ThingyResource(thingy));
 environment.healthChecks().register(new ThingyHealthCheck(thingy));
}

It’s important to keep the run method clean, so if creating an instance of something is
complicated, like the Thingy class above, extract that logic into a factory.

Health Checks

A health check is a runtime test which you can use to verify your application’s behavior in its
production environment. For example, you may want to ensure that your database client is connected
to the database:

public class DatabaseHealthCheck extends HealthCheck {
 private final Database database;

 public DatabaseHealthCheck(Database database) {
 super("database");
 this.database = database;
 }

 @Override
 protected Result check() throws Exception {
 if (database.isConnected()) {
 return Result.healthy();
 } else {
 return Result.unhealthy("Cannot connect to " + database.getUrl());
 }
 }
}

You can then add this health check to your application’s environment:

environment.healthChecks().register(new DatabaseHealthCheck(database));

By sending a GET request to /healthcheck on the admin port you can run these tests and view
the results:

$ curl http://dw.example.com:8081/healthcheck
* deadlocks: OK
* database: OK

If all health checks report success, a 200 OK is returned. If any fail, a
500 Internal Server Error is returned with the error messages and exception stack traces (if an
exception was thrown).

All Dropwizard applications ship with the deadlocks health check installed by default, which uses
Java 1.6’s built-in thread deadlock detection to determine if any threads are deadlocked.

Managed Objects

Most applications involve objects which need to be started and stopped: thread pools, database
connections, etc. Dropwizard provides the Managed interface for this. You can either have the
class in question implement the #start() and #stop() methods, or write a wrapper class which
does so. Adding a Managed instance to your application’s Environment ties that object’s
lifecycle to that of the application’s HTTP server. Before the server starts, the #start() method is
called. After the server has stopped (and after its graceful shutdown period) the #stop() method
is called.

For example, given a theoretical Riak [http://riak.basho.com] client which needs to be started and stopped:

public class RiakClientManager implements Managed {
 private final RiakClient client;

 public RiakClientManager(RiakClient client) {
 this.client = client;
 }

 @Override
 public void start() throws Exception {
 client.start();
 }

 @Override
 public void stop() throws Exception {
 client.stop();
 }
}

public class MyApplication extends Application<MyConfiguration>{
 @Override
 public void run(MyApplicationConfiguration configuration, Environment environment) {
 RiakClient client = ...;
 RiakClientManager riakClientManager = new RiakClientManager(client);
 environment.lifecycle().manage(riakClientManager);
 }
}

If RiakClientManager#start() throws an exception–e.g., an error connecting to the server–your
application will not start and a full exception will be logged. If RiakClientManager#stop() throws
an exception, the exception will be logged but your application will still be able to shut down.

It should be noted that Environment has built-in factory methods for ExecutorService and
ScheduledExecutorService instances which are managed. See LifecycleEnvironment#executorService
and LifecycleEnvironment#scheduledExecutorService for details.

Bundles

A Dropwizard bundle is a reusable group of functionality, used to define blocks of an application’s
behavior. For example, AssetBundle provides a simple way to serve static assets from your
application’s src/main/resources/assets directory as files available from /assets/* in your
application.

Some bundles require configuration parameters. These bundles implement ConfiguredBundle and will
require your application’s Configuration subclass to implement a specific interface.

Serving Assets

Either your application or your static assets can be served from the root path, but
not both. The latter is useful when using Dropwizard to back a Javascript
application. To enable it, move your application to a sub-URL.

server:
 type: simple
 applicationContextPath: /application/* # Default value*

Then use an extended AssetsBundle constructor to serve resources in the
assets folder from the root path. index.htm is served as the default
page.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {
 bootstrap.addBundle(new AssetsBundle("/assets/", "/"));
}

Commands

Commands are basic actions which Dropwizard runs based on the arguments provided on the command
line. The built-in server command, for example, spins up an HTTP server and runs your application.
Each Command subclass has a name and a set of command line options which Dropwizard will use to
parse the given command line arguments.

public class MyApplication extends Application<MyConfiguration>{
 @Override
 public void initialize(Bootstrap<DropwizardConfiguration> bootstrap) {
 bootstrap.addCommand(new MyCommand());
 }
}

Configured Commands

Some commands require access to configuration parameters and should extend the ConfiguredCommand
class, using your application’s Configuration class as its type parameter. Dropwizard will treat
the first argument on the command line as the path to a YAML configuration file, parse and validate it,
and provide your command with an instance of the configuration class.

Tasks

A Task is a run-time action your application provides access to on the administrative port via HTTP.
All Dropwizard applications start with the gc task, which explicitly triggers the JVM’s garbage
collection. (This is useful, for example, for running full garbage collections during off-peak times
or while the given application is out of rotation.)

Running a task can be done by sending a POST request to /tasks/{task-name} on the admin
port. For example:

$ curl -X POST http://dw.example.com:8081/tasks/gc
Running GC...
Done!

Logging

Dropwizard uses Logback [http://logback.qos.ch/] for its logging backend. It provides an slf4j [http://www.slf4j.org/] implementation, and even
routes all java.util.logging, Log4j, and Apache Commons Logging usage through Logback.

slf4j provides the following logging levels:

	ERROR

	Error events that might still allow the application to continue running.

	WARN

	Potentially harmful situations.

	INFO

	Informational messages that highlight the progress of the application at coarse-grained level.

	DEBUG

	Fine-grained informational events that are most useful to debug an application.

	TRACE

	Finer-grained informational events than the DEBUG level.

Log Format

Dropwizard’s log format has a few specific goals:

	Be human readable.

	Be machine parsable.

	Be easy for sleepy ops folks to figure out why things are pear-shaped at 3:30AM using standard
UNIXy tools like tail and grep.

The logging output looks like this:

TRACE [2010-04-06 06:42:35,271] com.example.dw.Thing: Contemplating doing a thing.
DEBUG [2010-04-06 06:42:35,274] com.example.dw.Thing: About to do a thing.
INFO [2010-04-06 06:42:35,274] com.example.dw.Thing: Doing a thing
WARN [2010-04-06 06:42:35,275] com.example.dw.Thing: Doing a thing
ERROR [2010-04-06 06:42:35,275] com.example.dw.Thing: This may get ugly.
! java.lang.RuntimeException: oh noes!
! at com.example.dw.Thing.run(Thing.java:16)
!

A few items of note:

	All timestamps are in UTC and ISO 8601 format.

	You can grep for messages of a specific level really easily:

tail -f dw.log | grep '^WARN'

	You can grep for messages from a specific class or package really easily:

tail -f dw.log | grep 'com.example.dw.Thing'

	You can even pull out full exception stack traces, plus the accompanying log message:

tail -f dw.log | grep -B 1 '^\!'

Configuration

You can specify a default logger level and even override the levels of
other loggers in your YAML configuration file:

Logging settings.
logging:

 # The default level of all loggers. Can be OFF, ERROR, WARN, INFO, DEBUG, TRACE, or ALL.
 level: INFO

 # Logger-specific levels.
 loggers:

 # Overrides the level of com.example.dw.Thing and sets it to DEBUG.
 "com.example.dw.Thing": DEBUG

Console Logging

By default, Dropwizard applications log INFO and higher to STDOUT. You can configure this by
editing the logging section of your YAML configuration file:

logging:
 appenders:
 - type: console
 threshold: WARN
 target: stderr

In the above, we’re instead logging only WARN and ERROR messages to the STDERR device.

File Logging

Dropwizard can also log to an automatically rotated set of log files. This is the recommended
configuration for your production environment:

logging:

 appenders:
 - type: file
 # The file to which current statements will be logged.
 currentLogFilename: ./logs/example.log

 # When the log file rotates, the archived log will be renamed to this and gzipped. The
 # %d is replaced with the previous day (yyyy-MM-dd). Custom rolling windows can be created
 # by passing a SimpleDateFormat-compatible format as an argument: "%d{yyyy-MM-dd-hh}".
 archivedLogFilenamePattern: ./logs/example-%d.log.gz

 # The number of archived files to keep.
 archivedFileCount: 5

 # The timezone used to format dates. HINT: USE THE DEFAULT, UTC.
 timeZone: UTC

Syslog Logging

Finally, Dropwizard can also log statements to syslog.

Note

Because Java doesn’t use the native syslog bindings, your syslog server must have an open
network socket.

logging:

 appenders:
 - type: syslog
 # The hostname of the syslog server to which statements will be sent.
 # N.B.: If this is the local host, the local syslog instance will need to be configured to
 # listen on an inet socket, not just a Unix socket.
 host: localhost

 # The syslog facility to which statements will be sent.
 facility: local0

You can combine any number of different appenders, including multiple instances of the same
appender with different configurations:

logging:

 # Permit DEBUG, INFO, WARN and ERROR messages to be logged by appenders.
 level: DEBUG

 appenders:
 # Log warnings and errors to stderr
 - type: console
 threshold: WARN
 target: stderr

 # Log info, warnings and errors to our apps' main log.
 # Rolled over daily and retained for 5 days.
 - type: file
 threshold: INFO
 currentLogFilename: ./logs/example.log
 archivedLogFilenamePattern: ./logs/example-%d.log.gz
 archivedFileCount: 5

 # Log debug messages, info, warnings and errors to our apps' debug log.
 # Rolled over hourly and retained for 6 hours
 - type: file
 threshold: DEBUG
 currentLogFilename: ./logs/debug.log
 archivedLogFilenamePattern: ./logs/debug-%d{yyyy-MM-dd-hh}.log.gz
 archivedFileCount: 6

Testing Applications

All of Dropwizard’s APIs are designed with testability in mind, so even your applications can have unit
tests:

public class MyApplicationTest {
 private final Environment environment = mock(Environment.class);
 private final MyApplication application = new MyApplication();
 private final MyConfiguration config = new MyConfiguration();

 @Before
 public void setup() throws Exception {
 config.setMyParam("yay");
 }

 @Test
 public void buildsAThingResource() throws Exception {
 application.run(config, environment);

 verify(environment).jersey().register(any(ThingResource.class));
 }
}

We highly recommend Mockito [http://code.google.com/p/mockito/] for all your mocking needs.

Banners

We think applications should print out a big ASCII art banner on startup. Yours should, too. It’s fun.
Just add a banner.txt class to src/main/resources and it’ll print it out when your application
starts:

INFO [2011-12-09 21:56:37,209] io.dropwizard.cli.ServerCommand: Starting hello-world
 dP
 88
 .d8888b. dP. .dP .d8888b. 88d8b.d8b. 88d888b. 88 .d8888b.
 88ooood8 `8bd8' 88' `88 88'`88'`88 88' `88 88 88ooood8
 88. d88b. 88. .88 88 88 88 88. .88 88 88. ...
 `88888P' dP' `dP `88888P8 dP dP dP 88Y888P' dP `88888P'
 88
 dP

INFO [2011-12-09 21:56:37,214] org.eclipse.jetty.server.Server: jetty-7.6.0
...

We could probably make up an argument about why this is a serious devops best practice with high ROI
and an Agile Tool, but honestly we just enjoy this.

We recommend you use TAAG [http://patorjk.com/software/taag/] for all your ASCII art banner needs.

Resources

Unsurprisingly, most of your day-to-day work with a Dropwizard application will be in the resource
classes, which model the resources exposed in your RESTful API. Dropwizard uses Jersey [http://jersey.java.net/] for this,
so most of this section is just re-hashing or collecting various bits of Jersey documentation.

Jersey is a framework for mapping various aspects of incoming HTTP requests to POJOs and then
mapping various aspects of POJOs to outgoing HTTP responses. Here’s a basic resource class:

@Path("/{user}/notifications")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class NotificationsResource {
 private final NotificationStore store;

 public NotificationsResource(NotificationStore store) {
 this.store = store;
 }

 @GET
 public NotificationList fetch(@PathParam("user") LongParam userId,
 @QueryParam("count") @DefaultValue("20") IntParam count) {
 final List<Notification> notifications = store.fetch(userId.get(), count.get());
 if (notifications != null) {
 return new NotificationList(userId, notifications);
 }
 throw new WebApplicationException(Status.NOT_FOUND);
 }

 @POST
 public Response add(@PathParam("user") LongParam userId,
 @Valid Notification notification) {
 final long id = store.add(userId.get(), notification);
 return Response.created(UriBuilder.fromResource(NotificationResource.class)
 .build(userId.get(), id))
 .build();
 }
}

This class provides a resource (a user’s list of notifications) which responds to GET and
POST requests to /{user}/notifications, providing and consuming application/json
representations. There’s quite a lot of functionality on display here, and this section will
explain in detail what’s in play and how to use these features in your application.

Paths

Important

Every resource class must have a @Path annotation.

The @Path annotation isn’t just a static string, it’s a URI Template [http://tools.ietf.org/html/draft-gregorio-uritemplate-07]. The {user} part
denotes a named variable, and when the template matches a URI the value of that variable will be
accessible via @PathParam-annotated method parameters.

For example, an incoming request for /1001/notifications would match the URI template, and the
value "1001" would be available as the path parameter named user.

If your application doesn’t have a resource class whose @Path URI template matches the URI of an
incoming request, Jersey will automatically return a 404 Not Found to the client.

Methods

Methods on a resource class which accept incoming requests are annotated with the HTTP methods they
handle: @GET, @POST, @PUT, @DELETE, @HEAD, @OPTIONS, and even
@HttpMethod for arbitrary new methods.

If a request comes in which matches a resource class’s path but has a method which the class doesn’t
support, Jersey will automatically return a 405 Method Not Allowed to the client.

The return value of the method (in this case, a NotificationList instance) is then mapped to the
negotiated media type this case, our resource only supports
JSON, and so the NotificationList is serialized to JSON using Jackson.

Metrics

Every resource method can be annotated with @Timed, @Metered, and @ExceptionMetered.
Dropwizard augments Jersey to automatically record runtime information about your resource methods.

Parameters

The annotated methods on a resource class can accept parameters which are mapped to from aspects of
the incoming request. The *Param annotations determine which part of the request the data is
mapped, and the parameter type determines how the data is mapped.

For example:

	A @PathParam("user")-annotated String takes the raw value from the user variable in
the matched URI template and passes it into the method as a String.

	A @QueryParam("count")-annotated IntParam parameter takes the first count value from
the request’s query string and passes it as a String to IntParam‘s constructor.
IntParam (and all other io.dropwizard.jersey.params.* classes) parses the string
as an Integer, returning a 400 Bad Request if the value is malformed.

	A @FormParam("name")-annotated Set<String> parameter takes all the name values from a
posted form and passes them to the method as a set of strings.

What’s noteworthy here is that you can actually encapsulate the vast majority of your validation
logic using specialized parameter objects. See AbstractParam for details.

Request Entities

If you’re handling request entities (e.g., an application/json object on a PUT request), you
can model this as a parameter without a *Param annotation. In the
example code, the add method provides a good example of
this:

@POST
public Response add(@PathParam("user") LongParam userId,
 @Valid Notification notification) {
 final long id = store.add(userId.get(), notification);
 return Response.created(UriBuilder.fromResource(NotificationResource.class)
 .build(userId.get(), id)
 .build();
}

Jersey maps the request entity to any single, unbound parameter. In this case, because the resource
is annotated with @Consumes(MediaType.APPLICATION_JSON), it uses the Dropwizard-provided Jackson
support which, in addition to parsing the JSON and mapping it to an instance of Notification,
also runs that instance through Dropwizard’s Validation.

If the deserialized Notification isn’t valid, Dropwizard returns a 422 Unprocessable Entity
response to the client.

Note

If your request entity parameter isn’t annotated with @Valid, it won’t be validated.

Media Types

Jersey also provides full content negotiation, so if your resource class consumes
application/json but the client sends a text/plain entity, Jersey will automatically reply
with a 406 Not Acceptable. Jersey’s even smart enough to use client-provided q-values in
their Accept headers to pick the best response content type based on what both the client and
server will support.

Responses

If your clients are expecting custom headers or additional information (or, if you simply desire an
additional degree of control over your responses), you can return explicitly-built Response
objects:

return Response.noContent().language(Locale.GERMAN).build();

In general, though, we recommend you return actual domain objects if at all possible. It makes
testing resources much easier.

Error Handling

If your resource class unintentionally throws an exception, Dropwizard will log that exception
(including stack traces) and return a terse, safe text/plain 500 Internal Server Error
response.

If your resource class needs to return an error to the client (e.g., the requested record doesn’t
exist), you have two options: throw a sublcass of Exception or restructure your method to
return a Response.

If at all possible, prefer throwing Exception instances to returning
Response objects.

If you throw a subclass of WebApplicationException jersey will map that to a defined response.

If you want more control, you can also delcare JerseyProviders in your Environment to map Exceptions
to certain responses by calling JerseyEnvironment#register(Object) with an implementation of
javax.ws.rs.ext.ExceptionMapper.
e.g. Your resource throws an InvalidArgumentException, but the response would be 400, bad request.

URIs

While Jersey doesn’t quite have first-class support for hyperlink-driven applications, the provided
UriBuilder functionality does quite well.

Rather than duplicate resource URIs, it’s possible (and recommended!) to initialize a UriBuilder
with the path from the resource class itself:

UriBuilder.fromResource(UserResource.class).build(user.getId());

Testing

As with just about everything in Dropwizard, we recommend you design your resources to be testable.
Dependencies which aren’t request-injected should be passed in via the constructor and assigned to
final fields.

Testing, then, consists of creating an instance of your resource class and passing it a mock.
(Again: Mockito [http://code.google.com/p/mockito/].)

public class NotificationsResourceTest {
 private final NotificationStore store = mock(NotificationStore.class);
 private final NotificationsResource resource = new NotificationsResource(store);

 @Test
 public void getsReturnNotifications() {
 final List<Notification> notifications = mock(List.class);
 when(store.fetch(1, 20)).thenReturn(notifications);

 final NotificationList list = resource.fetch(new LongParam("1"), new IntParam("20"));

 assertThat(list.getUserId(),
 is(1L));

 assertThat(list.getNotifications(),
 is(notifications));
 }
}

Caching

Adding a Cache-Control statement to your resource class is simple with Dropwizard:

@GET
@CacheControl(maxAge = 6, maxAgeUnit = TimeUnit.HOURS)
public String getCachableValue() {
 return "yay";
}

The @CacheControl annotation will take all of the parameters of the Cache-Control header.

Representations

Representation classes are classes which, when handled to various Jersey MessageBodyReader and
MessageBodyWriter providers, become the entities in your application’s API. Dropwizard heavily
favors JSON, but it’s possible to map from any POJO to custom formats and back.

Basic JSON

Jackson is awesome at converting regular POJOs to JSON and back. This file:

public class Notification {
 private String text;

 public Notification(String text) {
 this.text = text;
 }

 @JsonProperty
 public String getText() {
 return text;
 }

 @JsonProperty
 public void setText(String text) {
 this.text = text;
 }
}

gets converted into this JSON:

{
 "text": "hey it's the value of the text field"
}

If, at some point, you need to change the JSON field name or the Java field without affecting the
other, you can add an explicit field name to the @JsonProperty annotation.

If you prefer immutable objects rather than JavaBeans, that’s also doable:

public class Notification {
 private final String text;

 @JsonCreator
 public Notification(@JsonProperty("text") String text) {
 this.text = text;
 }

 @JsonProperty("text")
 public String getText() {
 return text;
 }
}

Advanced JSON

Not all JSON representations map nicely to the objects your application deals with, so it’s sometimes
necessary to use custom serializers and deserializers. Just annotate your object like this:

@JsonSerialize(using=FunkySerializer.class)
@JsonDeserialize(using=FunkyDeserializer.class)
public class Funky {
 // ...
}

Then make a FunkySerializer class which implements JsonSerializer<Funky> and a
FunkyDeserializer class which implements JsonDeserializer<Funky>.

snake_case

A common issue with JSON is the disagreement between camelCase and snake_case field names.
Java and Javascript folks tend to like camelCase; Ruby, Python, and Perl folks insist on
snake_case. To make Dropwizard automatically convert field names to snake_case (and back),
just annotate the class with @JsonSnakeCase:

@JsonSnakeCase
public class Person {
 private final String firstName;

 @JsonCreator
 public Person(@JsonProperty String firstName) {
 this.firstName = firstName;
 }

 @JsonProperty
 public String getFirstName() {
 return firstName;
 }
}

This gets converted into this JSON:

{
 "first_name": "Coda"
}

Validation

Like Configuration, you can add validation annotations to fields of your
representation classes and validate them. If we’re accepting client-provided Person objects, we
probably want to ensure that the name field of the object isn’t null or blank. We can do
this as follows:

public class Person {

 @NotEmpty // ensure that name isn't null or blank
 private final String name;

 @JsonCreator
 public Person(@JsonProperty("name") String name) {
 this.name = name;
 }

 @JsonProperty("name")
 public String getName() {
 return name;
 }
}

Then, in our resource class, we can add the @Valid annotation to the Person annotation:

@PUT
public Response replace(@Valid Person person) {
 // ...
}

If the name field is missing, Dropwizard will return a text/plain
422 Unprocessable Entity response detailing the validation errors:

* name may not be empty

Advanced

More complex validations (for example, cross-field comparisons) are often hard to do using
declarative annotations. As an emergency maneuver, add the @ValidationMethod to any
boolean-returning method which begins with is:

@ValidationMethod(message="may not be Coda")
public boolean isNotCoda() {
 return !("Coda".equals(name));
}

Note

Due to the rather daft JavaBeans conventions, the method must begin with is (e.g.,
#isValidPortRange(). This is a limitation of Hibernate Validator, not Dropwizard.

Streaming Output

If your application happens to return lots of information, you may get a big performance and efficiency
bump by using streaming output. By returning an object which implements Jersey’s StreamingOutput
interface, your method can stream the response entity in a chunk-encoded output stream. Otherwise,
you’ll need to fully construct your return value and then hand it off to be sent to the client.
.. _man-core-representations-html:

HTML Representations

For generating HTML pages, check out Dropwizard’s views support.

Custom Representations

Sometimes, though, you’ve got some wacky output format you need to produce or consume and no amount
of arguing will make JSON acceptable. That’s unfortunate but OK. You can add support for arbitrary
input and output formats by creating classes which implement Jersey’s MessageBodyReader<T> and
MessageBodyWriter<T> interfaces. (Make sure they’re annotated with @Provider and
@Produces("text/gibberish") or @Consumes("text/gibberish").) Once you’re done, just add
instances of them (or their classes if they depend on Jersey’s @Context injection) to your
application’s Environment on initialization.

How it’s glued together

When your application starts up, it will spin up a Jetty HTTP server, see DefaultServerFactory.
This server will have two handlers, one for your application port and the other for your admin port.
The admin handler creates and registers the AdminServlet. This has a handle to all of the
application healthchecks and metrics via the ServletContext.

The application port has an HttpServlet as well, this is composed of DropwizardResourceConfig,
which is an extension of Jersey’s resource configuration that performs scanning to
find root resource and provider classes. Ultimately when you call
env.jersey().register(new SomeResource()),
you are adding to the DropwizardResourceConfig. This config is a jersey Application, so all of
your application resources are served from one Servlet

DropwizardResourceConfig is where the various ResourceMethodDispatchAdapter are registered to
enable the following functionality:

	Resource method requests with @Timed, @Metered, @ExceptionMetered are delegated to special dispatchers which decorate the metric telemetry

	Resources that return Guava Optional are unboxed. Present returns underlying type, and non present 404s

	Resource methods that are annotated with @CacheControl are delegated to a special dispatcher that decorates on the cache control headers

	Enables using Jackson to parse request entities into objects and generate response entities from objects, all while performing validation

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard Client

The dropwizard-client module provides you with two different performant,
instrumented HTTP clients so you can integrate your service with other web
services: Apache HttpClient, version 4.3 and Jersey Client, version 1.18.

Apache HttpClient, version 4.3

The underlying library for dropwizard-client is Apache’s HttpClient [http://hc.apache.org/httpcomponents-core-4.3.x/index.html], a full-featured,
well-tested HTTP client library.

To create a managed, instrumented HttpClient instance, your
configuration class needs an HttpClientConfiguration instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 @JsonProperty
 private HttpClientConfiguration httpClient = new HttpClientConfiguration();

 public HttpClientConfiguration getHttpClientConfiguration() {
 return httpClient;
 }
}

Then, in your application’s run method, create a new HttpClientBuilder:

@Override
public void run(ExampleConfiguration config,
 Environment environment) {
 final HttpClient httpClient = new HttpClientBuilder(environment).using(config.getHttpClientConfiguration())
 .build();
 environment.addResource(new ExternalServiceResource(httpClient));
}

Metrics

Dropwizard’s HttpClientBuilder actually gives you an instrumented subclass which tracks the
following pieces of data:

	org.apache.http.conn.ClientConnectionManager.available-connections

	The number the number idle connections ready to be used to execute requests.

	org.apache.http.conn.ClientConnectionManager.leased-connections

	The number of persistent connections currently being used to execut requests.

	org.apache.http.conn.ClientConnectionManager.max-connections

	The maximum number of allowed connections.

	org.apache.http.conn.ClientConnectionManager.pending-connections

	The number of connection requests being blocked awaiting a free connection

	org.apache.http.client.HttpClient.get-requests

	The rate at which GET requests are being sent.

	org.apache.http.client.HttpClient.post-requests

	The rate at which POST requests are being sent.

	org.apache.http.client.HttpClient.head-requests

	The rate at which HEAD requests are being sent.

	org.apache.http.client.HttpClient.put-requests

	The rate at which PUT requests are being sent.

	org.apache.http.client.HttpClient.delete-requests

	The rate at which DELETE requests are being sent.

	org.apache.http.client.HttpClient.options-requests

	The rate at which OPTIONS requests are being sent.

	org.apache.http.client.HttpClient.trace-requests

	The rate at which TRACE requests are being sent.

	org.apache.http.client.HttpClient.connect-requests

	The rate at which CONNECT requests are being sent.

	org.apache.http.client.HttpClient.move-requests

	The rate at which MOVE requests are being sent.

	org.apache.http.client.HttpClient.patch-requests

	The rate at which PATCH requests are being sent.

	org.apache.http.client.HttpClient.other-requests

	The rate at which requests with none of the above methods are being sent.

Note

The naming strategy for the metrics associated requests is configurable.
Specifically, the last part e.g. get-requests.
What is displayed is HttpClientMetricNameStrategies.METHOD_ONLY, you can
also include the host via HttpClientMetricNameStrategies.HOST_AND_METHOD
or a url without query string via HttpClientMetricNameStrategies.QUERYLESS_URL_AND_METHOD

Jersey Client, version 1.18

If HttpClient [http://hc.apache.org/httpcomponents-core-4.3.x/index.html] is too low-level for you, Dropwizard also supports Jersey’s Client API [https://jersey.java.net/documentation/1.18/client-api.html].
Jersey’s Client allows you to use all of the server-side media type support that your service
uses to, for example, deserialize application/json request entities as POJOs.

To create a managed, instrumented JerseyClient instance, your
configuration class needs an JerseyClientConfiguration instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 @JsonProperty
 private JerseyClientConfiguration httpClient = new JerseyClientConfiguration();

 public JerseyClientConfiguration getJerseyClientConfiguration() {
 return httpClient;
 }
}

Then, in your service’s run method, create a new JerseyClientBuilder:

@Override
public void run(ExampleConfiguration config,
 Environment environment) {

 final Client client = new JerseyClientBuilder(environment).using(config.getJerseyClientConfiguration())
 .build(getName());
 environment.addResource(new ExternalServiceResource(client));
}

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard JDBI

The dropwizard-jdbi module provides you with managed access to JDBI [http://jdbi.org/], a flexible and
modular library for interacting with relational databases via SQL.

Configuration

To create a managed, instrumented DBI instance, your
configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 @JsonProperty
 private DataSourceFactory database = new DataSourceFactory();

 public DataSourceFactory getDataSourceFactory() {
 return database;
 }
}

Then, in your service’s run method, create a new DBIFactory:

@Override
public void run(ExampleConfiguration config,
 Environment environment) throws ClassNotFoundException {
 final DBIFactory factory = new DBIFactory();
 final DBI jdbi = factory.build(environment, config.getDataSourceFactory(), "postgresql");
 final UserDAO dao = jdbi.onDemand(UserDAO.class);
 environment.jersey().register(new UserResource(dao));
}

This will create a new managed connection pool to the database, a
health check for connectivity to the database, and a new DBI
instance for you to use. Note the ClassNotFoundException is thrown by the DBIFactory class
when the build method is unable to locate the JDBC driver class. This will cause the service to
exit displaying the output of the exception.

Your service’s configuration file will then look like this:

database:
 # the name of your JDBC driver
 driverClass: org.postgresql.Driver

 # the username
 user: pg-user

 # the password
 password: iAMs00perSecrEET

 # the JDBC URL
 url: jdbc:postgresql://db.example.com/db-prod

 # any properties specific to your JDBC driver:
 properties:
 charSet: UTF-8

 # the maximum amount of time to wait on an empty pool before throwing an exception
 maxWaitForConnection: 1s

 # the SQL query to run when validating a connection's liveness
 validationQuery: "/* MyService Health Check */ SELECT 1"

 # the minimum number of connections to keep open
 minSize: 8

 # the maximum number of connections to keep open
 maxSize: 32

 # whether or not idle connections should be validated
 checkConnectionWhileIdle: false

 # the amount of time to sleep between runs of the idle connection validation, abandoned cleaner and idle pool resizing
 evictionInterval: 10s

 # the minimum amount of time an connection must sit idle in the pool before it is eligible for eviction
 minIdleTime: 1 minute

Usage

We highly recommend you use JDBI’s SQL Objects API [http://jdbi.org/sql_object_overview/], which allows you to write DAO classes as
interfaces:

public interface MyDAO {
 @SqlUpdate("create table something (id int primary key, name varchar(100))")
 void createSomethingTable();

 @SqlUpdate("insert into something (id, name) values (:id, :name)")
 void insert(@Bind("id") int id, @Bind("name") String name);

 @SqlQuery("select name from something where id = :id")
 String findNameById(@Bind("id") int id);
}

final MyDAO dao = database.onDemand(MyDAO.class);

This ensures your DAO classes are trivially mockable, as well as encouraging you to extract mapping
code (e.g., ResultSet -> domain objects) into testable, reusable classes.

Exception Handling

By adding the DBIExceptionsBundle to your application, Dropwizard
will automatically unwrap any thrown SQLException or DBIException instances.
This is critical for debugging, since otherwise only the common wrapper exception’s stack trace is
logged.

Prepended Comments

If you’re using JDBI’s SQL Objects API [http://jdbi.org/sql_object_overview/] (and you should be), dropwizard-jdbi will
automatically prepend the SQL object’s class and method name to the SQL query as an SQL comment:

/* com.example.service.dao.UserDAO.findByName */
SELECT id, name, email
FROM users
WHERE name = 'Coda';

This will allow you to quickly determine the origin of any slow or misbehaving queries.

Guava Support

dropwizard-jdbi supports Optional<T> arguments and ImmutableList<T> and
ImmutableSet<T> query results.

Joda Time Support

dropwizard-jdbi supports joda-time DateTime arguments and DateTime fields in query results.

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard Migrations

The dropwizard-migrations module provides you with a wrapper for Liquibase [http://www.liquibase.org] database
refactoring.

Configuration

Like Dropwizard JDBI, your configuration class needs a
DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 @JsonProperty("database")
 private DataSourceFactory database = new DataSourceFactory();

 public DataSourceFactory getDataSourceFactory() {
 return database;
 }
}

Adding The Bundle

Then, in your application’s initialize method, add a new MigrationsBundle subclass:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {
 bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
 @Override
 public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration) {
 return configuration.getDataSourceFactory();
 }
 });
}

Defining Migrations

Your database migrations are stored in your Dropwizard project, in
src/main/resources/migrations.xml. This file will be packaged with your application, allowing you to
run migrations using your application’s command-line interface.

For example, to create a new people table, I might create an initial migrations.xml like
this:

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog
 xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
 http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.0.xsd">

 <changeSet id="1" author="codahale">
 <createTable tableName="people">
 <column name="id" type="bigint" autoIncrement="true">
 <constraints primaryKey="true" nullable="false"/>
 </column>
 <column name="fullName" type="varchar(255)">
 <constraints nullable="false"/>
 </column>
 <column name="jobTitle" type="varchar(255)"/>
 </createTable>
 </changeSet>
</databaseChangeLog>

For more information on available database refactorings, check the Liquibase [http://www.liquibase.org] documentation.

Checking Your Database’s State

To check the state of your database, use the db status command:

java -jar hello-world.jar db status helloworld.yml

Dumping Your Schema

If your database already has an existing schema and you’d like to pre-seed your migrations.xml
document, you can run the db dump command:

java -jar hello-world.jar db dump helloworld.yml

This will output a Liquibase [http://www.liquibase.org] change log with a change set capable of recreating your database.

Tagging Your Schema

To tag your schema at a particular point in time (e.g., to make rolling back easier), use the
db tag command:

java -jar hello-world.jar db tag helloworld.yml 2012-10-08-pre-user-move

Migrating Your Schema

To apply pending change sets to your database schema, run the db migrate command:

java -jar hello-world.jar db migrate helloworld.yml

Warning

This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the --dry-run flag first. This will output the SQL to be run to stdout.

Note

To apply only a specific number of pending change sets, use the --count flag.

Rolling Back Your Schema

To roll back change sets which have already been applied, run the db rollback command. You will
need to specify either a tag, a date, or a number of change sets to roll back to:

java -jar hello-world.jar db rollback helloworld.yml --tag 2012-10-08-pre-user-move

Warning

This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the --dry-run flag first. This will output the SQL to be run to stdout.

Testing Migrations

To verify that a set of pending change sets can be fully rolled back, use the db test command,
which will migrate forward, roll back to the original state, then migrate forward again:

java -jar hello-world.jar db test helloworld.yml

Warning

Do not run this in production, for obvious reasons.

Preparing A Rollback Script

To prepare a rollback script for pending change sets before they have been applied, use the
db prepare-rollback command:

java -jar hello-world.jar db prepare-rollback helloworld.yml

This will output a DDL script to stdout capable of rolling back all unapplied change sets.

Generating Documentation

To generate HTML documentation on the current status of the database, use the db generate-docs
command:

java -jar hello-world.jar db generate-docs helloworld.yml ~/db-docs/

Dropping All Objects

To drop all objects in the database, use the db drop-all command:

java -jar hello-world.jar db drop-all --confirm-delete-everything helloworld.yml

Warning

You need to specify the --confirm-delete-everything flag because this command deletes
everything in the database. Be sure you want to do that first.

Fast-Forwarding Through A Change Set

To mark a pending change set as applied (e.g., after having backfilled your migrations.xml with
db dump), use the db fast-forward command:

java -jar hello-world.jar db fast-forward helloworld.yml

This will mark the next pending change set as applied. You can also use the --all flag to mark
all pending change sets as applied.

More Information

For more information on available commands, either use the db --help command, or for more
detailed help on a specific command, use db <cmd> --help.

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard Hibernate

The dropwizard-hibernate module provides you with managed access to Hibernate [http://www.hibernate.org/], a
powerful, industry-standard object-relation mapper (ORM).

Configuration

To create a managed, instrumented SessionFactory instance, your
configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
 @Valid
 @NotNull
 @JsonProperty("database")
 private DataSourceFactory database = new DataSourceFactory();

 public DataSourceFactory getDataSourceFactory() {
 return database;
 }
}

Then, add a HibernateBundle instance to your application class, specifying your entity classes
and how to get a DataSourceFactory from your configuration subclass:

private final HibernateBundle<ExampleConfiguration> hibernate = new HibernateBundle<ExampleConfiguration>(Person.class) {
 @Override
 public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration) {
 return configuration.getDataSourceFactory();
 }
};

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {
 bootstrap.addBundle(hibernate);
}

@Override
public void run(ExampleConfiguration config,
 Environment environment) throws ClassNotFoundException {
 final UserDAO dao = new UserDAO(hibernate.getSessionFactory());
 environment.jersey().register(new UserResource(dao));
}

This will create a new managed connection pool to the database, a
health check for connectivity to the database, and a new
SessionFactory instance for you to use in your DAO classes.

Your application’s configuration file will then look like this:

database:
 # the name of your JDBC driver
 driverClass: org.postgresql.Driver

 # the username
 user: pg-user

 # the password
 password: iAMs00perSecrEET

 # the JDBC URL
 url: jdbc:postgresql://db.example.com/db-prod

 # any properties specific to your JDBC driver:
 properties:
 charSet: UTF-8
 hibernate.dialect: org.hibernate.dialect.PostgreSQLDialect

 # the maximum amount of time to wait on an empty pool before throwing an exception
 maxWaitForConnection: 1s

 # the SQL query to run when validating a connection's liveness
 validationQuery: "/* MyApplication Health Check */ SELECT 1"

 # the minimum number of connections to keep open
 minSize: 8

 # the maximum number of connections to keep open
 maxSize: 32

 # whether or not idle connections should be validated
 checkConnectionWhileIdle: false

Usage

Data Access Objects

Dropwizard comes with AbstractDAO, a minimal template for entity-specific DAO classes. It
contains type-safe wrappers for most of SessionFactory‘s common operations:

public class PersonDAO extends AbstractDAO<Person> {
 public PersonDAO(SessionFactory factory) {
 super(factory);
 }

 public Person findById(Long id) {
 return get(id);
 }

 public long create(Person person) {
 return persist(person).getId();
 }

 public List<Person> findAll() {
 return list(namedQuery("com.example.helloworld.core.Person.findAll"));
 }
}

Transactional Resource Methods

Dropwizard uses a declarative method of scoping transactional boundaries. Not all resource methods
actually require database access, so the @UnitOfWork annotation is provided:

@GET
@Timed
@UnitOfWork
public Person findPerson(@PathParam("id") LongParam id) {
 return dao.findById(id.get());
}

This will automatically open a session, begin a transaction, call findByPerson, commit the
transaction, and finally close the session. If an exception is thrown, the transaction is rolled
back.

Important

The Hibernate session is closed before your resource method’s return value (e.g.,
the Person from the database), which means your resource method (or DAO) is
responsible for initializing all lazily-loaded collections, etc., before returning.
Otherwise, you’ll get a LazyInitializationException thrown in your template (or
null values produced by Jackson).

Prepended Comments

Dropwizard automatically configures Hibernate to prepend a comment describing the context of all
queries:

/* load com.example.helloworld.core.Person */
select
 person0_.id as id0_0_,
 person0_.fullName as fullName0_0_,
 person0_.jobTitle as jobTitle0_0_
from people person0_
where person0_.id=?

This will allow you to quickly determine the origin of any slow or misbehaving queries.

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard Authentication

The dropwizard-auth client provides authentication using either HTTP Basic
Authentication or OAuth2 bearer tokens.

Authenticators

An authenticator is a strategy class which, given a set of client-provided credentials, possibly
returns a principal (i.e., the person or entity on behalf of whom your service will do something).

Authenticators implement the Authenticator<C, P> interface, which has a single method:

public class SimpleAuthenticator implements Authenticator<BasicCredentials, User> {
 @Override
 public Optional<User> authenticate(BasicCredentials credentials) throws AuthenticationException {
 if ("secret".equals(credentials.getPassword())) {
 return Optional.of(new User(credentials.getUsername()));
 }
 return Optional.absent();
 }
}

This authenticator takes basic auth credentials and if the client-provided
password is secret, authenticates the client as a User with the client-provided username.

If the password doesn’t match, an absent Optional is returned instead, indicating that the
credentials are invalid.

Warning

It’s important for authentication services to not provide too much information in their
errors. The fact that a username or email has an account may be meaningful to an
attacker, so the Authenticator interface doesn’t allow you to distinguish between
a bad username and a bad password. You should only throw an AuthenticationException
if the authenticator is unable to check the credentials (e.g., your database is
down).

Caching

Because the backing data stores for authenticators may not handle high throughput (an RDBMS or LDAP
server, for example), Dropwizard provides a decorator class which provides caching:

CachingAuthenticator.wrap(ldapAuthenticator,
 config.getAuthenticationCachePolicy());

Dropwizard can parse Guava’s CacheBuilderSpec from the configuration policy, allowing your
configuration file to look like this:

authenticationCachePolicy: maximumSize=10000, expireAfterAccess=10m

This caches up to 10,000 principals with an LRU policy, evicting stale entries after 10 minutes.

Basic Authentication

The BasicAuthProvider enables HTTP Basic authentication, and requires an authenticator which
takes instances of BasicCredentials:

@Override
public void run(ExampleConfiguration configuration,
 Environment environment) {
 environment.jersey().register(new BasicAuthProvider<User>(new ExampleAuthenticator(),
 "SUPER SECRET STUFF"));
}

OAuth2

The OAuthProvider enables OAuth2 bearer-token authentication, and requires an authenticator
which takes an instance of String.

@Override
public void run(ExampleConfiguration configuration,
 Environment environment) {
 environment.jersey().register(new OAuthProvider<User>(new ExampleAuthenticator(),
 "SUPER SECRET STUFF"));
}

Protecting Resources

To protect a resource, simply include an @Auth-annotated principal as one of your resource
method parameters:

@GET
public SecretPlan getSecretPlan(@Auth User user) {
 return dao.findPlanForUser(user);
}

If there are no provided credentials for the request, or if the credentials are invalid, the
provider will return a scheme-appropriate 401 Unauthorized response without calling your
resource method.

If you have a resource which is optionally protected (e.g., you want to display a logged-in user’s
name but not require login), set the required attribute of the annotation to false:

@GET
public HomepageView getHomepage(@Auth(required = false) User user) {
 return new HomepageView(Optional.fromNullable(user));
}

If there is no authenticated principal, null is used instead, and your resource method is still
called.

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard Views

The dropwizard-views-mustache & dropwizard-views-freemarker modules provides you with simple, fast HTML views using either FreeMarker [http://FreeMarker.sourceforge.net/] or Mustache [http://mustache.github.com/mustache.5.html].

To enable views for your Application, add the ViewBundle in the initialize method of your Service class:

public void initialize(Bootstrap<MyConfiguration> bootstrap) {
 bootstrap.addBundle(new ViewBundle());
}

Then, in your resource method, add a View class:

public class PersonView extends View {
 private final Person person;

 public PersonView(Person person) {
 super("person.ftl");
 this.person = person;
 }

 public Person getPerson() {
 return person;
 }
}

person.ftl is the path of the template relative to the class name. If this class was
com.example.service.PersonView, Dropwizard would then look for the file
src/main/resources/com/example/service/person.ftl.

If your template ends with .ftl, it’ll be interpreted as a FreeMarker [http://FreeMarker.sourceforge.net/] template. If it ends with
.mustache, it’ll be interpreted as a Mustache template.

Tip

Dropwizard Views also support localized template files. It picks up the client’s locale from
their Accept-Language, so you can add a French template in person_fr.ftl or a Canadian
template in person_en_CA.ftl.

Your template file might look something like this:

<#-- @ftlvariable name="" type="com.example.views.PersonView" -->
<html>
 <body>
 <!-- calls getPerson().getName() and sanitizes it -->
 <h1>Hello, ${person.name?html}!</h1>
 </body>
</html>

The @ftlvariable lets FreeMarker (and any FreeMarker IDE plugins you may be using) know that the
root object is a com.example.views.PersonView instance. If you attempt to call a property which
doesn’t exist on PersonView – getConnectionPool(), for example – it will flag that line in
your IDE.

Once you have your view and template, you can simply return an instance of your View subclass:

@Path("/people/{id}")
@Produces(MediaType.TEXT_HTML)
public class PersonResource {
 private final PersonDAO dao;

 public PersonResource(PersonDAO dao) {
 this.dao = dao;
 }

 @GET
 public PersonView getPerson(@PathParam("id") String id) {
 return new PersonView(dao.find(id));
 }
}

Tip

Jackson can also serialize your views, allowing you to serve both text/html and
application/json with a single representation class.

For more information on how to use FreeMarker, see the FreeMarker [http://FreeMarker.sourceforge.net/] documentation.

For more information on how to use Mustache, see the Mustache [http://mustache.github.com/mustache.5.html] and Mustache.java [https://github.com/spullara/mustache.java] documentation.

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard & Scala

The dropwizard-scala module is now maintained and documented elsewhere [https://github.com/bretthoerner/dropwizard-scala].

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Testing Dropwizard

The dropwizard-testing module provides you with some handy classes for testing
your representation classes
and resource classes. It also provides a JUnit rule
for full-stack testing of your entire app.

Testing Representations

While Jackson’s JSON support is powerful and fairly easy-to-use, you shouldn’t just rely on
eyeballing your representation classes to ensure you’re actually producing the API you think you
are. By using the helper methods in JsonHelpers you can add unit tests for serializing and
deserializing your representation classes to and from JSON.

Let’s assume we have a Person class which your API uses as both a request entity (e.g., when
writing via a PUT request) and a response entity (e.g., when reading via a GET request):

public class Person {
 @JsonProperty
 private String name;

 @JsonProperty
 private String email;

 private Person() {
 // Jackson deserialization
 }

 public Person(String name, String email) {
 this.name = name;
 this.email = email;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 // hashCode
 // equals
 // toString etc.
}

Fixtures

First, write out the exact JSON representation of a Person in the
src/test/resources/fixtures directory of your Dropwizard project as person.json:

{
 "name": "Luther Blissett",
 "email": "lb@example.com"
}

Testing Serialization

Next, write a test for serializing a Person instance to JSON:

import static io.dropwizard.testing.JsonHelpers.*;
import static org.hamcrest.Matchers.*;

@Test
public void serializesToJSON() throws Exception {
 final Person person = new Person("Luther Blissett", "lb@example.com");
 assertThat("a Person can be serialized to JSON",
 asJson(person),
 is(equalTo(jsonFixture("fixtures/person.json"))));
}

This test uses Hamcrest matchers [http://code.google.com/p/hamcrest/] and JUnit [http://www.junit.org/] to test that when a Person instance is serialized
via Jackson it matches the JSON in the fixture file. (The comparison is done via a normalized JSON
string representation, so whitespace doesn’t affect the results.)

Testing Deserialization

Next, write a test for deserializing a Person instance from JSON:

import static io.dropwizard.testing.JsonHelpers.*;
import static org.hamcrest.Matchers.*;

@Test
public void deserializesFromJSON() throws Exception {
 final Person person = new Person("Luther Blissett", "lb@example.com");
 assertThat("a Person can be deserialized from JSON",
 fromJson(jsonFixture("fixtures/person.json"), Person.class),
 is(person));
}

This test uses Hamcrest matchers [http://code.google.com/p/hamcrest/] and JUnit [http://www.junit.org/] to test that when a Person instance is
deserialized via Jackson from the specified JSON fixture it matches the given object.

Testing Resources

While many resource classes can be tested just by calling the methods on the class in a test, some
resources lend themselves to a more full-stack approach. For these, use ResourceTestRule, which
loads a given resource instance in an in-memory Jersey server:

import static org.fest.assertions.api.Assertions.assertThat;

public class PersonResourceTest {

 private static final PeopleStore dao = mock(PeopleStore.class);

 @ClassRule
 public static final ResourceTestRule resources = ResourceTestRule.builder()
 .addResource(new PersonResource(dao))
 .build();

 private final Person person = new Person("blah", "blah@example.com");

 @Before
 public void setup() {
 when(dao.fetchPerson(eq("blah"))).thenReturn(person);
 }

 @Test
 public void testGetPerson() {
 assertThat(resources.client().resource("/person/blah").get(Person.class))
 .isEqualTo(person);
 verify(dao).fetchPerson("blah");
 }
}

Instansiate a ResourceTestRule using its Builder and add the various resource instances you
want to test via ResourceTestRule.Builder#addResource(Object). Use a @ClassRule annotation
to have the rule wrap the entire test class or the @Rule annotation to have the rule wrap
each test individually (make sure to remove static final modifier from resources).

In your tests, use #client(), which returns a Jersey Client instance to talk to and test
your instances.

This doesn’t require opening a port, but ResourceTestRule tests will perform all the serialization,
deserialization, and validation that happens inside of the HTTP process.

This also doesn’t require a full integration test. In the above
example, a mocked PeopleStore is passed to the
PersonResource instance to isolate it from the database. Not only does this make the test much
faster, but it allows your resource unit tests to test error conditions and edge cases much more
easily.

Hint

You can trust PeopleStore works because you’ve got working unit tests for it, right?

Should you, at some point, grow tired of the near-infinite amount of debug logging produced by
ResourceTestRule you can use the java.util.logging API to silence the com.sun.jersey logger.

Integrated Testing

It can be useful to start up your entire app and hit it with real HTTP requests during testing. This can be
achieved by adding DropwizardAppRule to your JUnit test class, which will start the app prior to any tests
running and stop it again when they’ve completed (roughly equivalent to having used @BeforeClass and @AfterClass).
DropwizardAppRule also exposes the app’s Configuration,
Environment and the app object itself so that these can be queried by the tests.

public class LoginAcceptanceTest {

 @ClassRule
 public static final DropwizardAppRule<TestConfiguration> RULE =
 new DropwizardAppRule<TestConfiguration>(MyApp.class, resourceFilePath("my-app-config.yaml"));

 @Test
 public void loginHandlerRedirectsAfterPost() {
 Client client = new Client();

 ClientResponse response = client.resource(
 String.format("http://localhost:%d/login", RULE.getLocalPort()))
 .post(ClientResponse.class, loginForm());

 assertThat(response.getStatus(), is(302));
 }
}

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard Example, Step by Step

The dropwizard-example module provides you with a working example
of a dropwizard app

	Open a terminal

	Make sure you have maven installed

	Make sure java home points at JDK 7

	Make sure you have curl

	mvn dependency:resolve

	mvn clean compile install

	mvn eclipse:eclipse -DdownloadSources=true

	From eclipse, File –> Import –> Existing Project into workspace

	java -jar ~/git/dropwizard/dropwizard-example/target/dropwizard-example-0.7.0-SNAPSHOT.jar db migrate example.yml

	The above ran the liquibase migration in /src/main/resources/migrations.xml, creating the table schema

	You can now start the app in your IDE by running java -jar ~/git/dropwizard/dropwizard-example/target/dropwizard-example-0.7.0-SNAPSHOT.jar db migrate example.yml

	Alternatively you can run this file in your IDE: com.example.helloworld.HelloWorldApplication server example.yml

	Insert a new person: curl -H "Content-Type: application/json" -X POST -d '{"fullName":"Coda Hale", "jobTitle" : "Chief Wizard" }' http://localhost:8080/people

	Retrieve that person: curl http://localhost:8080/people/1

	View the freemarker template: curl http://localhost:8080/people/1/view_freemarker

	View the mustache template: curl http://localhost:8080/people/1/view_mustache

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	User Manual

Dropwizard Configuration Reference

The dropwizard-configuration module provides you with a polymorphic configuration
mechanism.

Servers

server:
 type: default
 maxThreads: 1024

All

	Name
	Default
	Description

	type
	default
	
	default

	simple

	maxThreads
	1024
	The maximum number of threads to use for requests.

	minThreads
	8
	The minimum number of threads to use for requests.

	maxQueuedRequests
	1024
	The maximum number of requests to queue before blocking the acceptors.

	idleThreadTimeout
	1 minute
	The amount of time a worker thread can be idle before being stopped.

	nofileSoftLimit
	(none)
	The number of open file descriptors before a soft error is issued.
Requires Jetty’s libsetuid.so on java.library.path.

	nofileHardLimit
	(none)
	The number of open file descriptors before a hard error is issued.
Requires Jetty’s libsetuid.so on java.library.path.

	gid
	(none)
	The group ID to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	uid
	(none)
	The user ID to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	user
	(none)
	The username to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	group
	(none)
	The group to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	umask
	(none)
	The umask to switch to once the connectors have started.
Requires Jetty’s libsetuid.so on java.library.path.

	startsAsRoot
	(none)
	Whether or not the Dropwizard application is started as a root user.
Requires Jetty’s libsetuid.so on java.library.path.

GZip

server:
 gzip:
 bufferSize: 8KiB

	Name
	Default
	Description

	enabled
	true
	If true, all requests with gzip in their Accept-Content-Encoding
headers will have their response entities encoded with gzip.

	minimumEntitySize
	256 bytes
	All response entities under this size are not compressed.

	bufferSize
	8KiB
	The size of the buffer to use when compressing.

	excludedUserAgents
	[]
	The set of user agents to exclude from compression.

	compressedMimeTypes
	[]
	If specified, the set of mime types to compress.

Request Log

server:
 requestLog:
 timeZone: UTC

	Name
	Default
	Description

	timeZone
	UTC
	The time zone to which request timestamps will be converted.

	appenders
	console appender
	The set of AppenderFactory appenders to which requests will be logged.
TODO See logging/appender refs for more info

Simple

Extends the attributes that are available to all servers

server:
 type: simple
 applicationContextPath: /application
 adminContextPath: /admin
 connector:
 type: http
 port: 8080

	Name
	Default
	Description

	connector
	http connector
	HttpConnectorFactory HTTP connector listening on port 8080.
The ConnectorFactory connector which will handle both application
and admin requests. TODO link to connector below.

	applicationContextPath
	/application
	The context path of the application servlets, including Jersey.

	adminContextPath
	/admin
	The context path of the admin servlets, including metrics and tasks.

Default

Extends the attributes that are available to all servers

server:
 adminMinThreads: 1
 adminMaxThreads: 64
 applicationConnectors:
 - type: http
 port: 8080
 - type: https
 port: 8443
 keyStorePath: example.keystore
 keyStorePassword: example
 validateCerts: false
 adminConnectors:
 - type: http
 port: 8081
 - type: https
 port: 8444
 keyStorePath: example.keystore
 keyStorePassword: example
 validateCerts: false

	Name
	Default
	Description

	applicationConnectors
	An HTTP connector [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java]
listening on port 8080.
	A set of connectors which will
handle application requests.

	adminConnectors
	An HTTP connector [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java]
listening on port 8081.
	An HTTP connector [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java] listening on port 8081.
A set of connectors which will
handle admin requests.

	adminMinThreads
	1
	The minimum number of threads to use for admin requests.

	adminMaxThreads
	64
	The maximum number of threads to use for admin requests.

Connectors

HTTP

Extending from the default server configuration
server:
 applicationConnectors:
 - type: http
 port: 8080
 bindHost: 127.0.0.1 # only bind to loopback
 headerCacheSize: 512 bytes
 outputBufferSize: 32KiB
 maxRequestHeaderSize: 8KiB
 maxResponseHeaderSize: 8KiB
 inputBufferSize: 8KiB
 idleTimeout: 30 seconds
 minBufferPoolSize: 64 bytes
 bufferPoolIncrement: 1KiB
 maxBufferPoolSize: 64KiB
 acceptorThreads: 1
 selectorThreads: 2
 acceptQueueSize: 1024
 reuseAddress: true
 soLingerTime: 345s
 useServerHeader: false
 useDateHeader: true
 useForwardedHeaders: true

	Name
	Default
	Description

	port
	8080
	The TCP/IP port on which to listen for incoming connections.

	bindHost
	(none)
	The hostname to bind to.

	headerCacheSize
	512 bytes
	The size of the header field cache.

	outputBufferSize
	32KiB
	The size of the buffer into which response content is aggregated before being sent to
the client. A larger buffer can improve performance by allowing a content producer
to run without blocking, however larger buffers consume more memory and may induce
some latency before a client starts processing the content.

	maxRequestHeaderSize
	8KiB
	The maximum size of a request header. Larger headers will allow for more and/or
larger cookies plus larger form content encoded in a URL. However, larger headers
consume more memory and can make a server more vulnerable to denial of service
attacks.

	maxResponseHeaderSize
	8KiB
	The maximum size of a response header. Larger headers will allow for more and/or
larger cookies and longer HTTP headers (eg for redirection). However, larger headers
will also consume more memory.

	inputBufferSize
	8KiB
	The size of the per-connection input buffer.

	idleTimeout
	30 seconds
	The maximum idle time for a connection, which roughly translates to the
java.net.Socket#setSoTimeout(int) [http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html#setSoTimeout(int)] call, although with NIO implementations
other mechanisms may be used to implement the timeout.
The max idle time is applied when waiting for a new message to be received on a connection
or when waiting for a new message to be sent on a connection.
This value is interpreted as the maximum time between some progress being made on the
connection. So if a single byte is read or written, then the timeout is reset.

	minBufferPoolSize
	64 bytes
	The minimum size of the buffer pool.

	bufferPoolIncrement
	1KiB
	The increment by which the buffer pool should be increased.

	maxBufferPoolSize
	64KiB
	The maximum size of the buffer pool.

	acceptorThreads
	# of CPUs/2
	The number of worker threads dedicated to accepting connections.

	selectorThreads
	# of CPUs
	The number of worker threads dedicated to sending and receiving data.

	acceptQueueSize
	(OS default)
	The size of the TCP/IP accept queue for the listening socket.

	reuseAddress
	true
	Whether or not SO_REUSEADDR is enabled on the listening socket.

	soLingerTime
	(disabled)
	Enable/disable SO_LINGER with the specified linger time.

	useServerHeader
	false
	Whether or not to add the Server header to each response.

	useDateHeader
	true
	Whether or not to add the Date header to each response.

	useForwardedHeaders
	true
	Whether or not to look at X-Forwarded-* headers added by proxies. See
ForwardedRequestCustomize for details.

HTTPS

Extends the attributes that are available to the HTTP connector

Extending from the default server configuration
server:
 applicationConnectors:
 - type: https
 port: 8443

 keyStorePath: /path/to/file
 keyStorePassword: changeit
 keyStoreType: JKS
 keyStoreProvider:
 trustStorePath: /path/to/file
 trustStorePassword: changeit
 trustStoreType: JKS
 trustStoreProvider:
 keyManagerPassword: changeit
 needClientAuth: false
 wantClientAuth:
 certAlias: <alias>
 crlPath: /path/to/file
 enableCRLDP: false
 enableOCSP: false
 maxCertPathLength: (unlimited)
 ocspResponderUrl: (none)
 jceProvider: (none)
 validateCerts: true
 validatePeers: true
 supportedProtocols: SSLv3
 supportedCipherSuites: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
 allowRenegotiation: true
 endpointIdentificationAlgorithm: (none)

	Name
	Default
	Description

	keyStorePath
	REQUIRED
	The path to the Java key store which contains the host certificate and private key.

	keyStorePassword
	REQUIRED
	The password used to access the key store.

	keyStoreType
	JKS
	The type of key store (usually JKS, PKCS12, JCEKS``,
Windows-MY}, or Windows-ROOT).

	keyStoreProvider
	(none)
	The JCE provider to use to access the key store.

	trustStorePath
	(none)
	The path to the Java key store which contains the CA certificates used to establish
trust.

	trustStorePassword
	(none)
	The password used to access the trust store.

	trustStoreType
	JKS
	The type of trust store (usually JKS, PKCS12, JCEKS,
Windows-MY, or Windows-ROOT).

	trustStoreProvider
	(none)
	The JCE provider to use to access the trust store.

	keyManagerPassword
	(none)
	The password, if any, for the key manager.

	needClientAuth
	(none)
	Whether or not client authentication is required.

	wantClientAuth
	(none)
	Whether or not client authentication is requested.

	certAlias
	(none)
	The alias of the certificate to use.

	crlPath
	(none)
	The path to the file which contains the Certificate Revocation List.

	enableCRLDP
	false
	Whether or not CRL Distribution Points (CRLDP) support is enabled.

	enableOCSP
	false
	Whether or not On-Line Certificate Status Protocol (OCSP) support is enabled.

	maxCertPathLength
	(unlimited)
	The maximum certification path length.

	ocspResponderUrl
	(none)
	The location of the OCSP responder.

	jceProvider
	(none)
	The name of the JCE provider to use for cryptographic support.

	validateCerts
	true
	Whether or not to validate TLS certificates before starting. If enabled, Dropwizard
will refuse to start with expired or otherwise invalid certificates.

	validatePeers
	true
	Whether or not to validate TLS peer certificates.

	supportedProtocols
	(none)
	A list of protocols (e.g., SSLv3, TLSv1) which are supported. All
other protocols will be refused.

	supportedCipherSuites
	(none)
	A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which
are supported. All other cipher suites will be refused

	allowRenegotiation
	true
	Whether or not TLS renegotiation is allowed.

	endpointIdentificationAlgorithm
	(none)
	Which endpoint identification algorithm, if any, to use during the TLS handshake.

SPDY

Extends the attributes that are available to the HTTPS connector

server:
 applicationConnectors:
 - type: spdy3
 port: 8445
 keyStorePath: example.keystore
 keyStorePassword: example
 validateCerts: false

	Name
	Default
	Description

	pushStrategy
	(none)
	The push strategy [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-spdy/src/main/java/io/dropwizard/spdy/PushStrategyFactory.java] to use for server-initiated SPDY pushes.

Logging

logging:
 level: INFO
 loggers:
 io.dropwizard: INFO
 appenders:
 - type: console

	Name
	Default
	Description

	level
	Level.INFO
	Logback logging level

	loggers
	(none)
	

	appenders
	(none)
	one of console, file or syslog

Console

logging:
 level: INFO
 appenders:
 - type: console
 threshold: ALL
 timeZone: UTC
 target: stdout
 logFormat: # TODO

	Name
	Default
	Description

	type
	REQUIRED
	The appender type. Must be console.

	threshold
	ALL
	The lowest level of events to print to the console.

	timeZone
	UTC
	The time zone to which event timestamps will be converted.

	target
	stdout
	The name of the standard stream to which events will be written.
Can be stdout or stderr.

	logFormat
	default
	The Logback pattern with which events will be formatted. See
the Logback [http://logback.qos.ch/manual/layouts.html#conversionWord] documentation for details.

File

logging:
 level: INFO
 appenders:
 - type: file
 currentLogFilename: /var/log/myapplication.log
 threshold: ALL
 archive: true
 archivedLogFilenamePattern: /var/log/myapplication-%d.log
 archivedFileCount: 5
 timeZone: UTC
 logFormat: # TODO

	Name
	Default
	Description

	type
	REQUIRED
	The appender type. Must be file.

	currentLogFilename
	REQUIRED
	The filename where current events are logged.

	threshold
	ALL
	The lowest level of events to write to the file.

	archive
	true
	Whether or not to archive old events in separate files.

	archivedLogFilenamePattern
	(none)
	Required if archive is true.
The filename pattern for archived files. %d is replaced with the date in yyyy-MM-dd form,
and the fact that it ends with .gz indicates the file will be gzipped as it’s archived.
Likewise, filename patterns which end in .zip will be filled as they are archived.

	archivedFileCount
	5
	The number of archived files to keep. Must be between 1 and 50.

	timeZone
	UTC
	The time zone to which event timestamps will be converted.

	logFormat
	default
	The Logback pattern with which events will be formatted. See
the Logback [http://logback.qos.ch/manual/layouts.html#conversionWord] documentation for details.

Syslog

logging:
 level: INFO
 appenders:
 - type: syslog
 host: localhost
 port: 514
 facility: local0
 threshold: ALL
 logFormat: # TODO

	Name
	Default
	Description

	host
	localhost
	The hostname of the syslog server.

	port
	514
	The port on which the syslog server is listening.

	facility
	local0
	The syslog facility to use. Can be either auth, authpriv,
daemon, cron, ftp, lpr, kern, mail,
news, syslog, user, uucp, local0,
local1, local2, local3, local4, local5,
local6, or local7.

	threshold
	ALL
	The lowest level of events to write to the file.

	logFormat
	defaultThe
	Logback pattern with which events will be formatted. See
the Logback [http://logback.qos.ch/manual/layouts.html#conversionWord] documentation for details.

Metrics

The metrics configuration has two fields; frequency and reporters.

metrics:
 frequency: 1 second
 reporters:
 - type: <type>

	Name
	Default
	Description

	frequency
	1 second
	The frequency to report metrics. Overridable per-reporter.

	reporters
	(none)
	A list of reporters to report metrics.

All Reporters

The following options are available for all metrics reporters.

metrics:
 reporters:
 - type: <type>
 durationUnit: milliseconds
 rateUnit: seconds
 excludes: (none)
 includes: (all)
 frequency: 1 second

	Name
	Default
	Description

	durationUnit
	milliseconds
	The unit to report durations as. Overrides per-metric duration units.

	rateUnit
	seconds
	The unit to report rates as. Overrides per-metric rate units.

	excludes
	(none)
	Metrics to exclude from reports, by name. When defined, matching metrics will not be reported.

	includes
	(all)
	Metrics to include in reports, by name. When defined, only these metrics will be reported.

	frequency
	1 second
	The frequency to report metrics. Overrides the default.

Formatted Reporters

These options are available only to “formatted” reporters and extend the options available to all reporters

metrics:
 reporters:
 - type: <type>
 locale: <system default>

	Name
	Default
	Description

	locale
	System default
	The Locale [http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html] for formatting numbers, dates and times.

Console Reporter

Reports metrics periodically to the console.

Extends the attributes that are available to formatted reporters

metrics:
 reporters:
 - type: console
 timeZone: UTC
 output: stdout

	Name
	Default
	Description

	timeZone
	UTC
	The timezone to display dates/times for.

	output
	stdout
	The stream to write to. One of stdout or stderr.

CSV Reporter

Reports metrics periodically to a CSV file.

Extends the attributes that are available to formatted reporters

metrics:
 reporters:
 - type: csv
 file: /path/to/file

	Name
	Default
	Description

	file
	No default
	The CSV file to write metrics to.

Ganglia Reporter

Reports metrics periodically to Ganglia.

Extends the attributes that are available to all reporters

metrics:
 reporters:
 - type: ganglia
 host: localhost
 port: 8649
 mode: unicast
 ttl: 1
 uuid: (none)
 spoof: localhost:8649
 tmax: 60
 dmax: 0

	Name
	Default
	Description

	host
	localhost
	The hostname (or group) of the Ganglia server(s) to report to.

	port
	8649
	The port of the Ganglia server(s) to report to.

	mode
	unicast
	The UDP addressing mode to announce the metrics with. One of unicast
or multicast.

	ttl
	1
	The time-to-live of the UDP packets for the announced metrics.

	uuid
	(none)
	The UUID to tag announced metrics with.

	spoof
	(none)
	The hostname and port to use instead of this nodes for the announced metrics.
In the format hostname:port.

	tmax
	60
	The tmax value to annouce metrics with.

	dmax
	0
	The dmax value to announce metrics with.

Graphite Reporter

Reports metrics periodically to Graphite.

Extends the attributes that are available to all reporters

metrics:
 reporters:
 - type: graphite
 host: localhost
 port: 8080
 prefix: <prefix>

	Name
	Default
	Description

	host
	localhost
	The hostname of the Graphite server to report to.

	port
	8080
	The port of the Graphite server to report to.

	prefix
	(none)
	The prefix for Metric key names to report to Graphite.

SLF4J

Reports metrics periodically by logging via SLF4J.

Extends the attributes that are available to all reporters

See BaseReporterFactory [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseReporterFactory.java] and BaseFormattedReporterFactory [https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseFormattedReporterFactory.java] for more options.

metrics:
 reporters:
 - type: log
 logger: metrics
 markerName: <marker name>

	Name
	Default
	Description

	logger
	metrics
	The name of the logger to write metrics to.

	markerName
	(none)
	The name of the marker to mark logged metrics with.

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

About Dropwizard

	Contributors

	Frequently Asked Questions

	Release Notes
	v0.7.0-SNAPSHOT

	v0.6.2: Mar 18 2013

	v0.6.1: Nov 28 2012

	v0.6.0: Nov 26 2012

	v0.5.1: Aug 06 2012

	v0.5.0: Jul 30 2012

	v0.4.4: Jul 24 2012

	v0.4.3: Jun 22 2012

	v0.4.2: Jun 20 2012

	v0.4.1: Jun 19 2012

	v0.4.0: May 1 2012

	v0.3.1: Mar 15 2012

	v0.3.0: Mar 13 2012

	v0.2.1: Feb 24 2012

	v0.2.0: Feb 15 2012

	v0.1.3: Jan 19 2012

	v0.1.2: Jan 07 2012

	v0.1.1: Dec 28 2011

	v0.1.0: Dec 21 2011

	Documentation TODOs

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	About Dropwizard

Contributors

Many, many thanks to:

	Adam Jordens [https://github.com/ajordens]

	Adam Marcus [https://github.com/marcua]

	Alex Heneveld [https://github.com/ahgittin]

	Anders Hedström [https://github.com/andershedstrom]

	Andrei Savu [https://github.com/andreisavu]

	Andrew Clay Shafer [https://github.com/littleidea].

	Armando Singer [https://github.com/asinger]

	Arun Horne [https://github.com/arunh]

	Brandon Beck [https://github.com/bbeck]

	Brian McCallister [https://github.com/brianm]

	Brian O’Neill [https://github.com/boneill42]

	Bruce Ritchie [https://github.com/Omega359]

	Cagatay Kavukcuoglu [https://github.com/tinkerware]

	Cameron Fieber [https://github.com/cfieber]

	Cemalettin Koc [https://github.com/Cemo]

	Chris Gray [https://github.com/chrisgray]

	Chris Tierney [https://github.com/christierney]

	Christopher Currie [https://github.com/christophercurrie]

	Christopher Elkins [https://github.com/celkins]

	Collin VanDyck [https://github.com/collinvandyck]

	Dale Wijnand [https://github.com/dwijnand]

	Dan Everton [https://github.com/deverton]

	David Morgantini [https://github.com/dmorgantini]

	David Stendardi [https://github.com/dstendardi]

	Derek Stainer [https://github.com/dstainer]

	Eric Tschetter [https://github.com/metamx]

	Fredrik Sundberg [https://github.com/KingBuzzer]

	Hal Hildebrand [https://github.com/Hellblazer]

	Ian Eure [https://github.com/ieure]

	James Ward [https://github.com/jamesward]

	Jared Stehler [https://github.com/cengageng]

	Jochen Schalanda [https://github.com/joschi]

	Joshua Spiewak [https://github.com/jspiewak]

	Justin Rudd [https://github.com/seagecko]

	Mark Wolfe [https://github.com/wolfeidau]

	Michael Fairley [https://github.com/michaelfairley]

	Mårten Gustafson [https://github.com/chids]

	Nick Telford [https://github.com/nicktelford]

	Ori Schwartz [https://github.com/fleaflicker]

	Sam Perman [https://github.com/samperman]

	Sam Quigley [https://github.com/emerose]

	Scott Askew [https://github.com/scottfromsf]

	Sebastian Hartte [https://github.com/shartte]

	Tatu Saloranta [https://github.com/cowtowncoder]

	Ted Nyman [https://github.com/tnm]

	Tom Crayford [https://github.com/tcrayford]

	Tom Morris [https://github.com/tommorris]

	Vidit Drolia [https://github.com/vdrolia]

	Xavier Shay [https://github.com/xaviershay]

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	About Dropwizard

Frequently Asked Questions

	What’s a Dropwizard?

	A character in a K.C. Green web comic [http://gunshowcomic.com/316].

	How is Dropwizard licensed?

	It’s licensed under the Apache License v2 [http://www.apache.org/licenses/LICENSE-2.0.html].

	How can I commit to Dropwizard?

	Go to the GitHub project [https://github.com/dropwizard/dropwizard], fork it, and submit a pull request. We prefer small, single-purpose
pull requests over large, multi-purpose ones. We reserve the right to turn down any proposed
changes, but in general we’re delighted when people want to make our projects better!

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dropwizard

 	About Dropwizard

Release Notes

v0.7.0-SNAPSHOT

	Upgraded to Java 7.

	Moved to the io.dropwizard group ID and namespace.

	Extracted out a number of reusable libraries: dropwizard-configuration,
dropwizard-jackson, dropwizard-jersey, dropwizard-jetty, dropwizard-lifecycle,
dropwizard-logging, dropwizard-servlets, dropwizard-util, dropwizard-validation.

	Extracted out various elements of Environment to separate classes: JerseyEnvironment,
LifecycleEnvironment, etc.

	Extracted out dropwizard-views-freemarker and dropwizard-views-mustache.
dropwizard-views just provides infrastructure now.

	Renamed Service to Application.

	Added dropwizard-forms, which provides support for multipart MIME entities.

	Added dropwizard-spdy.

	Added AppenderFactory, allowing for arbitrary logging appenders for application and request
logs.

	Added ConnectorFactory, allowing for arbitrary Jetty connectors.

	Added ServerFactory, with multi- and single-connector implementations.

	Added ReporterFactory, for metrics reporters, with Graphite and Ganglia implementations.

	Added ConfigurationSourceProvider to allow loading configuration files from sources other than
the filesystem.

	Added setuid support. Configure the user/group to run as and soft/hard open file limits in the
ServerFactory. To bind to privileged ports (e.g. 80), enable startAsRoot and set user
and group, then start your application as the root user.

	Added builders for managed executors.

	Added a default check command, which loads and validates the service configuration.

	Added support for the Jersey HTTP client to dropwizard-client.

	Added Jackson Afterburner support.

	Added support for deflate-encoded requests and responses.

	Added support for HTTP Sessions. Add the annotated parameter to your resource method:
@Session HttpSession session to have the session context injected.

	Added support for a “flash” message to be propagated across requests. Add the annotated parameter
to your resource method: @Session Flash message to have any existing flash message injected.

	Added support for deserializing Java enums with fuzzy matching rules (i.e., whitespace
stripping, -/_ equivalence, case insensitivity, etc.).

	Added HibernateBundle#configure(Configuration) for customization of Hibernate configuration.

	Added support for Joda Time DateTime arguments and results when using JDBI.

	Added configuration option to include Exception stack-traces when logging to syslog. Stack traces
are now excluded by default.

	Added the application name and PID (if detectable) to the beginning of syslog messages, as is the
convention.

	Added --migrations-file command-line option to migrate command to supply the migrations
file explicitly.

	Validation errors are now returned as application/json responses.

	Simplified AsyncRequestLog; now standardized on Jetty 9 NCSA format.

	Renamed DatabaseConfiguration to DataSourceFactory, and ConfigurationStrategy to
DatabaseConfiguration.

	Changed logging to be asynchronous. Messages are now buffered and batched in-memory before being
delivered to the configured appender(s).

	Changed handling of runtime configuration errors. Will no longer display an Exception stack-trace
and will present a more useful description of the problem, including suggestions when appropriate.

	Changed error handling to depend more heavily on Jersey exception mapping.

	Changed dropwizard-db to use tomcat-jdbc instead of tomcat-dbcp.

	Changed default formatting when logging nested Exceptions to display the root-cause first.

	Replaced ResourceTest with ResourceTestRule, a JUnit TestRule.

	Dropped Scala support.

	Dropped ManagedSessionFactory.

	Dropped ObjectMapperFactory; use ObjectMapper instead.

	Dropped Validator; use javax.validation.Validator instead.

	Fixed a shutdown bug in dropwizard-migrations.

	Fixed formatting of “Caused by” lines not being prefixed when logging nested Exceptions.

	Fixed not all available Jersey endpoints were being logged at startup.

	Upgraded to argparse4j 0.4.3.

	Upgraded to Guava 16.0.1.

	Upgraded to Hibernate Validator 5.0.2.

	Upgraded to Jackson 2.3.1.

	Upgraded to JDBI 2.53.

	Upgraded to Jetty 9.0.7.

	Upgraded to Liquibase 3.1.1.

	Upgraded to Logback 1.1.1.

	Upgraded to Metrics 3.0.1.

	Upgraded to Mustache 0.8.14.

	Upgraded to SLF4J 1.7.6.

	Upgraded to Jersey 1.18.

	Upgraded to Apache HttpClient 4.3.2.

	Upgraded to tomcat-jdbc 7.0.50.

	Upgraded to Hibernate 4.3.1.Final.

v0.6.2: Mar 18 2013

	Added support for non-UTF8 views.

	Fixed an NPE for services in the root package.

	Fixed exception handling in TaskServlet.

	Upgraded to Slf4j 1.7.4.

	Upgraded to Jetty 8.1.10.

	Upgraded to Jersey 1.17.1.

	Upgraded to Jackson 2.1.4.

	Upgraded to Logback 1.0.10.

	Upgraded to Hibernate 4.1.9.

	Upgraded to Hibernate Validator 4.3.1.

	Upgraded to tomcat-dbcp 7.0.37.

	Upgraded to Mustache.java 0.8.10.

	Upgraded to Apache HttpClient 4.2.3.

	Upgraded to Jackson 2.1.3.

	Upgraded to argparse4j 0.4.0.

	Upgraded to Guava 14.0.1.

	Upgraded to Joda Time 2.2.

	Added retries to HttpClientConfiguration.

	Fixed log formatting for extended stack traces, also now using extended stack traces as the
default.

	Upgraded to FEST Assert 2.0M10.

v0.6.1: Nov 28 2012

	Fixed incorrect latencies in request logs on Linux.

	Added ability to register multiple ServerLifecycleListener instances.

v0.6.0: Nov 26 2012

	Added Hibernate support in dropwizard-hibernate.

	Added Liquibase migrations in dropwizard-migrations.

	Renamed http.acceptorThreadCount to http.acceptorThreads.

	Renamed ssl.keyStorePath to ssl.keyStore.

	Dropped JerseyClient. Use Jersey’s Client class instead.

	Moved JDBI support to dropwizard-jdbi.

	Dropped Database. Use JDBI’s DBI class instead.

	Dropped the Json class. Use ObjectMapperFactory and ObjectMapper instead.

	Decoupled JDBI support from tomcat-dbcp.

	Added group support to Validator.

	Moved CLI support to argparse4j.

	Fixed testing support for Optional resource method parameters.

	Fixed Freemarker support to use its internal encoding map.

	Added property support to ResourceTest.

	Fixed JDBI metrics support for raw SQL queries.

	Dropped Hamcrest matchers in favor of FEST assertions in dropwizard-testing.

	Split Environment into Bootstrap and Environment, and broke configuration of each into
Service‘s #initialize(Bootstrap) and #run(Configuration, Environment).

	Combined AbstractService and Service.

	Trimmed down ScalaService, so be sure to add ScalaBundle.

	Added support for using JerseyClientFactory without an Environment.

	Dropped Jerkson in favor of Jackson’s Scala module.

	Added Optional support for JDBI.

	Fixed bug in stopping AsyncRequestLog.

	Added UUIDParam.

	Upgraded to Metrics 2.2.0.

	Upgraded to Jetty 8.1.8.

	Upgraded to Mockito 1.9.5.

	Upgraded to tomcat-dbcp 7.0.33.

	Upgraded to Mustache 0.8.8.

	Upgraded to Jersey 1.15.

	Upgraded to Apache HttpClient 4.2.2.

	Upgraded to JDBI 2.41.

	Upgraded to Logback 1.0.7 and SLF4J 1.7.2.

	Upgraded to Guava 13.0.1.

	Upgraded to Jackson 2.1.1.

	Added support for Joda Time.

Note

Upgrading to 0.6.0 will require changing your code. First, your Service subclass will
need to implement both #initialize(Bootstrap<T>) and
#run(T, Environment). What used to be in initialize should be moved to run.
Second, your representation classes need to be migrated to Jackson 2. For the most part,
this is just changing imports to com.fasterxml.jackson.annotation.*, but there are
some subtler changes in functionality [http://wiki.fasterxml.com/JacksonUpgradeFrom19To20].
Finally, references to 0.5.x’s Json, JerseyClient, or JDBI classes should be
changed to Jackon’s ObjectMapper, Jersey’s Client, and JDBI’s DBI
respectively.

v0.5.1: Aug 06 2012

	Fixed logging of managed objects.

	Fixed default file logging configuration.

	Added FEST-Assert as a dropwizard-testing dependency.

	Added support for Mustache templates (*.mustache) to dropwizard-views.

	Added support for arbitrary view renderers.

	Fixed command-line overrides when no configuration file is present.

	Added support for arbitrary DnsResolver implementations in HttpClientFactory.

	Upgraded to Guava 13.0 final.

	Fixed task path bugs.

	Upgraded to Metrics 2.1.3.

	Added JerseyClientConfiguration#compressRequestEntity for disabling the compression of request
entities.

	Added Environment#scanPackagesForResourcesAndProviders for automatically detecting Jersey
providers and resources.

	Added Environment#setSessionHandler.

v0.5.0: Jul 30 2012

	Upgraded to JDBI 2.38.1.

	Upgraded to Jackson 1.9.9.

	Upgraded to Jersey 1.13.

	Upgraded to Guava 13.0-rc2.

	Upgraded to HttpClient 4.2.1.

	Upgraded to tomcat-dbcp 7.0.29.

	Upgraded to Jetty 8.1.5.

	Improved AssetServlet:
	More accurate Last-Modified-At timestamps.

	More general asset specification.

	Default filename is now configurable.

	Improved JacksonMessageBodyProvider:
	Now based on Jackson’s JAX-RS support.

	Doesn’t read or write types annotated with @JsonIgnoreType.

	Added @MinSize, @MaxSize, and @SizeRange validations.

	Added @MinDuration, @MaxDuration, and @DurationRange validations.

	Fixed race conditions in Logback initialization routines.

	Fixed TaskServlet problems with custom context paths.

	Added jersey-text-framework-core as an explicit dependency of dropwizard-testing. This
helps out some non-Maven build frameworks with bugs in dependency processing.

	Added addProvider to JerseyClientFactory.

	Fixed NullPointerException problems with anonymous health check classes.

	Added support for serializing/deserializing ByteBuffer instances as JSON.

	Added supportedProtocols to SSL configuration, and disabled SSLv2 by default.

	Added support for Optional<Integer> query parameters and others.

	Removed jersey-freemarker dependency from dropwizard-views.

	Fixed missing thread contexts in logging statements.

	Made the configuration file argument for the server command optional.

	Added support for disabling log rotation.

	Added support for arbitrary KeyStore types.

	Added Log.forThisClass().

	Made explicit service names optional.

v0.4.4: Jul 24 2012

	Added support for @JsonIgnoreType to JacksonMessageBodyProvider.

v0.4.3: Jun 22 2012

	Re-enable immediate flushing for file and console logging appenders.

v0.4.2: Jun 20 2012

	Fixed JsonProcessingExceptionMapper. Now returns human-readable error messages for malformed
or invalid JSON as a 400 Bad Request. Also handles problems with JSON generation and object
mapping in a developer-friendly way.

v0.4.1: Jun 19 2012

	Fixed type parameter resolution in for subclasses of subclasses of ConfiguredCommand.

	Upgraded to Jackson 1.9.7.

	Upgraded to Logback 1.0.6, with asynchronous logging.

	Upgraded to Hibernate Validator 4.3.0.

	Upgraded to JDBI 2.34.

	Upgraded to Jetty 8.1.4.

	Added logging.console.format, logging.file.format, and logging.syslog.format
parameters for custom log formats.

	Extended ResourceTest to allow for enabling/disabling specific Jersey features.

	Made Configuration serializable as JSON.

	Stopped lumping command-line options in a group in Command.

	Fixed java.util.logging level changes.

	Upgraded to Apache HttpClient 4.2.

	Improved performance of AssetServlet.

	Added withBundle to ScalaService to enable bundle mix-ins.

	Upgraded to SLF4J 1.6.6.

	Enabled configuration-parameterized Jersey containers.

	Upgraded to Jackson Guava 1.9.1, with support for Optional.

	Fixed error message in AssetBundle.

	Fixed WebApplicationException``s being thrown by ``JerseyClient.

v0.4.0: May 1 2012

	Switched logging from Log4j [http://logging.apache.org/log4j/1.2/] to Logback [http://logback.qos.ch/].
	Deprecated Log#fatal methods.

	Deprecated Log4j usage.

	Removed Log4j JSON support.

	Switched file logging to a time-based rotation system with optional GZIP and ZIP compression.

	Replaced logging.file.filenamePattern with logging.file.currentLogFilename and
logging.file.archivedLogFilenamePattern.

	Replaced logging.file.retainedFileCount with logging.file.archivedFileCount.

	Moved request logging to use a Logback-backed, time-based rotation system with optional GZIP
and ZIP compression. http.requestLog now has console, file, and syslog
sections.

	Fixed validation errors for logging configuration.

	Added ResourceTest#addProvider(Class<?>).

	Added ETag and Last-Modified support to AssetServlet.

	Fixed off logging levels conflicting with YAML’s helpfulness.

	Improved Optional support for some JDBC drivers.

	Added ResourceTest#getJson().

	Upgraded to Jackson 1.9.6.

	Improved syslog logging.

	Fixed template paths for views.

	Upgraded to Guava 12.0.

	Added support for deserializing CacheBuilderSpec instances from JSON/YAML.

	Switched AssetsBundle and servlet to using cache builder specs.

	Switched CachingAuthenticator to using cache builder specs.

	Malformed JSON request entities now produce a 400 Bad Request instead of a
500 Server Error response.

	Added connectionTimeout, maxConnectionsPerRoute, and keepAlive to
HttpClientConfiguration.

	Added support for using Guava’s HostAndPort in configuration properties.

	Upgraded to tomcat-dbcp 7.0.27.

	Upgraded to JDBI 2.33.2.

	Upgraded to HttpClient 4.1.3.

	Upgraded to Metrics 2.1.2.

	Upgraded to Jetty 8.1.3.

	Added SSL support.

v0.3.1: Mar 15 2012

	Fixed debug logging levels for Log.

v0.3.0: Mar 13 2012

	Upgraded to JDBI 2.31.3.

	Upgraded to Jackson 1.9.5.

	Upgraded to Jetty 8.1.2. (Jetty 9 is now the experimental branch. Jetty 8 is just Jetty 7 with
Servlet 3.0 support.)

	Dropped dropwizard-templates and added dropwizard-views instead.

	Added AbstractParam#getMediaType().

	Fixed potential encoding bug in parsing YAML files.

	Fixed a NullPointerException when getting logging levels via JMX.

	Dropped support for @BearerToken and added dropwizard-auth instead.

	Added @CacheControl for resource methods.

	Added AbstractService#getJson() for full Jackson customization.

	Fixed formatting of configuration file parsing errors.

	ThreadNameFilter is now added by default. The thread names Jetty worker threads are set to the
method and URI of the HTTP request they are currently processing.

	Added command-line overriding of configuration parameters via system properties. For example,
-Ddw.http.port=8090 will override the configuration file to set http.port to 8090.

	Removed ManagedCommand. It was rarely used and confusing.

	If http.adminPort is the same as http.port, the admin servlet will be hosted under
/admin. This allows Dropwizard applications to be deployed to environments like Heroku, which
require applications to open a single port.

	Added http.adminUsername and http.adminPassword to allow for Basic HTTP Authentication
for the admin servlet.

	Upgraded to Metrics 2.1.1 [http://metrics.codahale.com/about/release-notes/#v2-1-1-mar-13-2012].

v0.2.1: Feb 24 2012

	Added logging.console.timeZone and logging.file.timeZone to control the time zone of
the timestamps in the logs. Defaults to UTC.

	Upgraded to Jetty 7.6.1.

	Upgraded to Jersey 1.12.

	Upgraded to Guava 11.0.2.

	Upgraded to SnakeYAML 1.10.

	Upgraded to tomcat-dbcp 7.0.26.

	Upgraded to Metrics 2.0.3.

v0.2.0: Feb 15 2012

	Switched to using jackson-datatype-guava for JSON serialization/deserialization of Guava
types.

	Use InstrumentedQueuedThreadPool from metrics-jetty.

	Upgraded to Jackson 1.9.4.

	Upgraded to Jetty 7.6.0 final.

	Upgraded to tomcat-dbcp 7.0.25.

	Improved fool-proofing for Service vs. ScalaService.

	Switched to using Jackson for configuration file parsing. SnakeYAML is used to parse YAML
configuration files to a JSON intermediary form, then Jackson is used to map that to your
Configuration subclass and its fields. Configuration files which don’t end in .yaml or
.yml are treated as JSON.

	Rewrote Json to no longer be a singleton.

	Converted JsonHelpers in dropwizard-testing to use normalized JSON strings to compare
JSON.

	Collapsed DatabaseConfiguration. It’s no longer a map of connection names to configuration
objects.

	Changed Database to use the validation query in DatabaseConfiguration for its #ping()
method.

	Changed many HttpConfiguration defaults to match Jetty’s defaults.

	Upgraded to JDBI 2.31.2.

	Fixed JAR locations in the CLI usage screens.

	Upgraded to Metrics 2.0.2.

	Added support for all servlet listener types.

	Added Log#setLevel(Level).

	Added Service#getJerseyContainer, which allows services to fully customize the Jersey
container instance.

	Added the http.contextParameters configuration parameter.

v0.1.3: Jan 19 2012

	Upgraded to Guava 11.0.1.

	Fixed logging in ServerCommand. For the last time.

	Switched to using the instrumented connectors from metrics-jetty. This allows for much
lower-level metrics about your service, including whether or not your thread pools are overloaded.

	Added FindBugs to the build process.

	Added ResourceTest to dropwizard-testing, which uses the Jersey Test Framework to provide
full testing of resources.

	Upgraded to Jetty 7.6.0.RC4.

	Decoupled URIs and resource paths in AssetServlet and AssetsBundle.

	Added rootPath to Configuration. It allows you to serve Jersey assets off a specific path
(e.g., /resources/* vs /*).

	AssetServlet now looks for index.htm when handling requests for the root URI.

	Upgraded to Metrics 2.0.0-RC0.

v0.1.2: Jan 07 2012

	All Jersey resource methods annotated with @Timed, @Metered, or @ExceptionMetered are
now instrumented via metrics-jersey.

	Now licensed under Apache License 2.0.

	Upgraded to Jetty 7.6.0.RC3.

	Upgraded to Metrics 2.0.0-BETA19.

	Fixed logging in ServerCommand.

	Made ServerCommand#run() non-final.

v0.1.1: Dec 28 2011

	Fixed ManagedCommand to provide access to the Environment, among other things.

	Made JerseyClient‘s thread pool managed.

	Improved ease of use for Duration and Size configuration parameters.

	Upgraded to Mockito 1.9.0.

	Upgraded to Jetty 7.6.0.RC2.

	Removed single-arg constructors for ConfiguredCommand.

	Added Log, a simple front-end for logging.

v0.1.0: Dec 21 2011

	Initial release

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Dropwizard

 	About Dropwizard

Documentation TODOs

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Dropwizard

Index

 Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/plus.png

_static/up.png

search.html

 Navigation

 		
 index

 		Dropwizard »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2013, Coda Hale, Yammer Inc..
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/dropwizard-logo.png

_static/comment.png

_static/dropwizard-hat.png

_static/up-pressed.png

_static/down-pressed.png

